精英家教网 > 初中数学 > 题目详情
8.列方程或方程组解应用题:
已知有23人在甲处劳动,17人在乙处劳动.现共调20人去支援,要使在甲处劳动的人数是在乙处劳动的人数的2倍,问应调往甲、乙两处各多少人?

分析 设应调往甲处x人,调往乙处y人,根据共调20人去支援且使在甲处劳动的人数是在乙处劳动的人数的2倍,即可得出关于x、y的二元一次方程组,解之即可得出结论.

解答 解:设应调往甲处x人,调往乙处y人,
根据题意得:$\left\{\begin{array}{l}{x+y=20}\\{23+x=2(y+17)}\end{array}\right.$,
解得:$\left\{\begin{array}{l}{x=17}\\{y=3}\end{array}\right.$.
答:应调往甲处17人,调往乙处3人.

点评 本题考查了二元一次方程组的应用,找准等量关系,列出二元一次方程组是解题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:填空题

5.如图,在平面直角坐标系中,矩形OABC的顶点A、C分别在x轴的负半轴、y轴的正半轴上,点B在第二象限.将矩形OABC绕点O顺时针旋转,使点B落在y轴上,得到矩形ODEF,BC与OD相交于点M.若经过点M的反比例函数y=$\frac{k}{x}$(x<0)的图象交AB于点N,S矩形OABC=32,tan∠DOE=$\frac{1}{2}$,则BN的长为3.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

19.邻边不相等的平行四边形纸片,减去一个菱形,余下一个四边形,称为第一次操作,在余下的四边形纸片中再剪去一个菱形,余下一个四边形,称为第二次操作,…依此类推,若第n次余下的四边形是菱形,则称原平行四边形为n阶准菱形,如图1,平行四边形ABCD中,若AB=1,BC=2,则平行四边形ABCD为1阶准菱形.
(1)理解与判断:
①邻边长分别为1和3的平行四边形是2阶准菱形.
②如图2,把平行四边形ABCD沿BE折叠(点E在AD上),使点A落在BC边上的点F,得到四边形ABFE,四边形ABFE的形状一定是菱形.若AB=2,AD=3,则图2中的平行四边形ABCD是2阶准菱形.
(2)操作、探究、计算:
①已知某平行四边形的边长分别为2,a(a>2)且是3阶准菱形,请画出平行四边形ABCD及裁剪线的所有可能示意图,并在图形下方写出a的值.
②已知平行四边形ABCD是一个2017阶准菱形,其邻边长分别为1,m(1<m<2),请直接写出m的最大值是2018.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

16.已知二次函数y=x2-(a-1)x+a-2,其中a是常数.
(1)求证:不论a为何值,该二次函数的图象与x轴一定有公共点;
(2)当a=4时,该二次函数的图象顶点为A,与x轴交于B,D两点,与y轴交于C点,求四边形ABCD的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

3.现有一个圆心角为90°,半径为12cm的扇形纸片,用它恰好围成一个圆锥的侧面(接缝忽略不计),该圆锥底面圆的半径为3cm.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

13.如图,直线y=ax+b与反比例函数$y=\frac{m}{x}$(x>0)的图象交于A(2,4),B(4,n)两点,与x轴,y轴分别交于C,D两点.
(1)求m,n的值;
(2)求△AOB的面积;
(3)若线段CD上的点P到x轴,y轴的距离相等.求点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

20.已知关于x的一元二次方程x2-2(k-1)x+k(k+2)=0有两个不相等的实数根.
(1)求k的取值范围;
(2)写出一个满足条件的k的值,并求此时方程的根.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

17.解不等式组$\left\{\begin{array}{l}2x+3<x+11\\ \frac{2x+5}{3}-1>2-x\end{array}$并把解集表示在数轴上.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

18.关于x的一元二次方程ax2-$\sqrt{2}$x+3=0有实数根,则a的取值范围是a≤$\frac{1}{6}$且a≠0.

查看答案和解析>>

同步练习册答案