精英家教网 > 初中数学 > 题目详情
1.表是校女子排球队队员的年龄分布.
年龄13141516
频数1452
求校女子排球队队员的平均年龄(结果取整数,可以使用计算器)

分析 利用加权平均数公式即可直接求解.

解答 解:校女子队队员的平均年龄是$\frac{13×1+14×4+15×5+16×2}{1+4+5+2}$=$\frac{176}{12}$≈15(岁).
答:校女子排球队队员的平均年龄是15岁.

点评 本题考查了加权平均数公式,数据的权能够反映数据的相对“重要程度”,要突出某个数据,只需要给它较大的“权”,权的差异对结果会产生直接的影响.对于一组不同权重的数据,加权平均数更能反映数据的真实信息,理解公式是关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

11.在一个不透明的袋子中装有三张分别标有1、2、3数字的卡片(卡片除数字外完全相同).
(1)从袋中任意抽取一张卡片,则抽出的是偶数的概率为$\frac{1}{3}$;
(2)从袋中任意抽取二张卡片,求被抽取的两张卡片构成两位数是奇数的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

12.边长为2的正方形ABCD在平面直角坐标系中如图放置,已知点A的横坐标为1,作直线OC与边AD交于点E.
(1)求点C的坐标;
(2)过O,D两点作直线,记该直线与直线OC的夹角为α,试求tanα的值.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

9.如图,在菱形ABCD中,∠BCD=108°,CD的垂直平分线交对角线AC于点F,E为垂足,连结BF,则∠ABF等于18°.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

16.如图1,点A(2,2),B(-4,-1)在反比例函数y=$\frac{k}{x}$的图象上,连接AB,分别交x、y轴于C、D两点;
(1)请你直接写出C、D两点的坐标:C(-2,0),D(0,1);
(2)证明:AD=BC;
(3)如图2,若M、N是反比例函数第三象限上的两个动点,连接AM、AN,分别交x、y轴于G、H两点,若∠MAN=45°,试求△GOH的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

6.如图,直线AB与双曲线交于点A,B,与x轴,y轴分别交于点C,D,与x轴的夹角α满足tanα=$\frac{3}{4}$,且OD=6,CD:CB=1:2.
(1)求点A的坐标;
(2)连接AO,并延长AO与双曲线相交于点E,求△ABE的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

4.哥哥和弟弟同时从家沿同一条路去同一所学校上学,弟弟步行,哥哥骑自行车,两人都匀速前进.弟弟步行每分钟走60米,哥哥骑自行车每分钟行驶160米.如图是两人之间的距离y与弟弟步行时间x之间的函数图象.请解答下列问题.
(1)图中点A的坐标m=500;
(2)试求家与学校之间的距离;
(3)已知弟弟从家出发时离上课还有12min,当他行至快到学校时,发现可能要迟到,于是他加快了步伐,以100m/min的速度前进,结果恰好准时到校,试求线段BC所表示的函数解析式.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

1.已知:∠AOB=80°,OD、OE分别是∠BOC和∠COA的平分线.
(1)如图1,OC在∠AOB内部时,求∠DOE的度数;
(2)如图2,将OC绕点旋转到OB的左侧时,OD、OE仍是∠BOC和∠COA的平分线,求此时∠DOE的度数;
(3)当OC绕O点旋转到OA的下方时,OD、OE分别是∠BOC和∠COA的平分线,∠DOE的度数又是多少?(直接写出结论,不必写出解题过程)

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

2.甲、乙两人分别从A、B两地同时出发,甲到达B地后立即原速返回A地,共用了20分钟,又过5分钟后乙也到达A地,如图为甲、乙两人距B地的路程y(米)与行使时间x(分钟)之间的函数图象.
(1)分别求出甲、乙两人的路程y与行使时间x的函数解析式;
(2)出发多长时间甲、乙两人相遇?
(3)乙若要与甲同时到达A地,则乙的速度应比原来快多少?

查看答案和解析>>

同步练习册答案