精英家教网 > 初中数学 > 题目详情
已知关于x的一元二次方程x2+2(k-1)x+k2-1=0有两个不相等的实数根.
(1)求实数k的取值范围;
(2)0可能是方程的一个根吗?若是,请求出它的另一个根;若不是,请说明理由.
【答案】分析:(1)方程有两个不相等的实数根,必须满足△=b2-4ac>0,由此可以得到关于k的不等式,然后解不等式即可求出实数k的取值范围;
(2)利用假设的方法,求出它的另一个根.
解答:解:(1)∵△=[2(k-1)]2-4(k2-1)
=4k2-8k+4-4k2+4=-8k+8,
又∵原方程有两个不相等的实数根,
∴-8k+8>0,
解得k<1,
即实数k的取值范围是k<1;

(2)假设0是方程的一个根,
则代入原方程得02+2(k-1)•0+k2-1=0,
解得k=-1或k=1(舍去),
即当k=-1时,0就为原方程的一个根,
此时原方程变为x2-4x=0,
解得x1=0,x2=4,
所以它的另一个根是4.
点评:总结一元二次方程根的情况与判别式△的关系:
(1)△>0?方程有两个不相等的实数根;
(2)△=0?方程有两个相等的实数根;
(3)△<0?方程没有实数根.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

已知关于x的一元二次x2+(2k-3)x+k2=0的两个实数根x1,x2且x1+x2=x1x2,求k的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知关于x的一元二次2x2-(2m2-1)x-m-4=0有一个实数根为
32

(1)求m的值;
(2)求已知方程所有不同的可能根的平方和.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知关于x的一元二次x2-6x+k+1=0的两个实数根x1,x2
1
x1
+
1
x2
=1
,则k的值是(  )
A、8B、-7C、6D、5

查看答案和解析>>

科目:初中数学 来源:第23章《一元二次方程》中考题集(23):23.3 实践与探索(解析版) 题型:解答题

已知关于x的一元二次2x2-(2m2-1)x-m-4=0有一个实数根为
(1)求m的值;
(2)求已知方程所有不同的可能根的平方和.

查看答案和解析>>

科目:初中数学 来源:2007年全国中考数学试题汇编《一元二次方程》(04)(解析版) 题型:解答题

(2007•汕头)已知关于x的一元二次2x2-(2m2-1)x-m-4=0有一个实数根为
(1)求m的值;
(2)求已知方程所有不同的可能根的平方和.

查看答案和解析>>

同步练习册答案