【题目】如图,在△ABC中,AD⊥BC,EF垂直平分AC,交AC于点F,交BC于点E,且BD=DE.
(1)若∠C=40°,求∠BAD的度数;
(2)若AC=5,DC=4,求△ABC的周长.
【答案】(1)10°;(2)13.
【解析】
(1)已知EF垂直平分AC,根据线段垂直平分线的性质定理可得AE=EC,即可得∠EAF=∠C=40°, 再由三角形外角的性质可得∠AED=∠EAF+∠C=80°;已知AD⊥BC,BD=DE, 根据线段垂直平分线的性质定理可得AB=AE,所以∠B=∠AED=80°,由此即可求得∠BAE=20°;又因为AB=AE,AD⊥BC,根据等腰三角形三线合一的性质可得∠BAD =∠BAE=10°;(2)由(1)得,AE=EC=AB,BD=DE,再由△ABC的周长=AB+AC+BC=AB+BD+CD+AC=EC+DE+CD+AC=CD+CD+AC即可求得△ABC的周长.
(1)∵EF垂直平分AC,
∴AE=EC,
∴∠EAF=∠C=40°,
∴∠AED=∠EAF+∠C=80°;
∵AD⊥BC,BD=DE,
∴AB=AE,
∴∠B=∠AED=80°,
∴∠BAE=20°,
∵AB=AE,AD⊥BC,
∴∠BAD =∠BAE=10°;
(2)由(1)得,AE=EC=AB,BD=DE,
∴△ABC的周长=AB+AC+BC=AB+BD+CD+AC=EC+DE+CD+AC=CD+CD+AC=4+4+5=13.
科目:初中数学 来源: 题型:
【题目】如图,在△ABD中,∠BAD=80°,C为BD延长线上一点,∠BAC=130°,∠ABD的角平分线与AC交于点E,连接DE.
(1)求证:点E到DA、DC的距离相等;
(2)求∠BED的度数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,BA=BC=20cm,AC=30cm,点P从A点出发,沿着AB以每秒4cm的速度向B点运动;同时点Q从C点出发,沿着CA以每秒3cm的速度向A点运动,设运动时间为x秒.
(1)x为何值时,PQ∥BC;
(2)是否存在某一时刻,使△APQ∽△CQB?若存在,求出此时AP的长;若不存在,请说明理由;
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】等边边长为,为边上一点,,且、分别于边、交于点、.
如图,当点为的三等分点,且时,判断的形状;
如图,若点在边上运动,且保持,设,四边形面积的,求与的函数关系式,并写出自变量的取值范围;
如图,若点在边上运动,且绕点旋转,当时,求的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某人设摊“摸彩”,只见他手持一袋,内装大小、质量完全相同的个红球、个白球,每次让顾客“免费”从袋中摸出两球,如果两球的颜色相同,顾客得元钱,否则顾客付给这人元钱,请你判断一下该活动对顾客________(填“合算”或“不合算”).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在一个不透明的盒子里,装有四个分别写有数字、、、的乒乓球(形状、大小一样),先从盒子里随机摸出一个乒乓球,记下数字后放回盒子,摇匀后再随机摸出一个乒乓球,记下数字.
请用树形图或列表法求两次摸出乒乓球上的数字相同的概率;
若再向盒子里放入个写有数字的乒乓球,使得从盒子里随机摸出一个乒乓球,摸到写有数字的乒乓球的概率为,求的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为了响应“低碳环保,绿色出行”的公益活动,小燕和妈妈决定周日骑自行车去图书馆借书.她们同时从家出发,小燕先以150米/分的速度骑行一段时间,休息了5分钟,再以m米/分钟的速度到达图书馆,而妈妈始终以120米/分钟的速度骑行,两人行驶的路程y(米)与时间x(分钟)的关系如图,请结合图像,解答下列问题:
(1)图书馆到小燕家的距离是 米;
(2)a= ,b= ,m= ;
(3)妈妈行驶的路程y(米)关于时间x(分钟)的函数解析式是 ;定义域是 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】甲、乙、丙、丁四位同学进行一次乒乓球单打比赛,要从中选出两位同学打第一场比赛.
若已确定甲打第一场,再从其余三位同学中随机选取一位,求恰好选中乙同学的概率.
请用树状图法或列表法,求恰好选中甲、乙两位同学的概率.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com