精英家教网 > 初中数学 > 题目详情
19.如图,点C既是AE的中点,也是BF为中点,AB∥CD,∠D=∠F,说明BC∥DE的理由.

分析 先证明△ECF≌△ACB,得∠F=∠B,得EF∥AB,再证明△FEC≌△DCE,得∠FCE=∠DEC即可证明.

解答 证明:在△ECF和△ACB中,
$\left\{\begin{array}{l}{CF=CB}\\{∠ECF=∠ACB}\\{CE=AC}\end{array}\right.$,
∴△ECF≌△ACB,
∴∠F=∠B,
∴EF∥AB,
∵CD∥AB,
∴EF∥CD,
∴∠FEC=∠ECD,
在△FEC和△DCE中,
$\left\{\begin{array}{l}{∠F=∠D}\\{∠FEC=∠ECD}\\{EC=EC}\end{array}\right.$,
∴△FEC≌△DCE,
∴∠FCE=∠DEC,
∴BC∥DE.

点评 本题考查平行线的判定和性质、全等三角形的判定和性质等知识,解题的关键是正确寻找全等三角形,灵活运用全等三角形的性质,属于中考常考题型.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

8.已知y=y1+y2,其中y1与x成正比例,y2与x-2成反比例,当x=1时,y=-1;当x=3时,y=3.求:
(1)y与x的函数关系式;
(2)当x=1时,y的值.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

10.已知Rt△ABC中,∠C=90°,∠A的正弦是(  )
A.$\frac{BC}{AB}$B.$\frac{AC}{AB}$C.$\frac{BC}{AC}$D.$\frac{AB}{BC}$

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

7.已知直线l:y=-2x+2,且点T(t,$\frac{2}{3}$)在直线l上.
(1)求OT所在直线的解析式;
(2)求直线l和直线OT与x轴所围成的图形的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

14.如图,Rt△ABC中,∠C=90°,AC=12,BC=5,分别以AB、AC、BC为边在AB的同侧作正方形ABDE、ACFG、BCIH,则图中阴影部分的面积之和(  )
A.60B.90C.144D.169

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

4.一组数据2,0,-2,1,3的平均数是(  )
A.0.8B.1C.1.5D.2

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

11.如图,一只跳蚤在第一象限及x轴、y轴上跳动,在第一秒钟,它从原点跳动到(1,0),然后接着按图中箭头所示方向跳动,即(0,0)→(0,1)→(1,1)→(0,1)→…,且每秒跳动一个单位,那么第35秒时跳蚤所在位置的坐标是(0,5).

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

8.小聪是一名非常爱钻研的七年级学生,他将4块完全一样的三角板(如图1)拼成了一个非常工整的图形(如图2),请教老师以后得知:该图形是一个正方形,并且里面的四边形也是一个正方形.为了作进一步的探究,小明将三角板的三边长用为a,b,c表示(如图3),将两个正方形分别用正方形ABCD和正方形EFGH表示,然后他用两种不同的方法计算了正方形ABCD的面积.
   
(1)请你用两种不同的方法计算出正方形ABCD面积:
方法一:方法二:
(2)根据(1)中计算结果,你能得到怎么样的结论?
(3)请用文字语言描述(2)中得到的结论.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

9.如图,四边形ABCD的对角线AC和BD交于点O,则下列不能判断四边形ABCD是平行四边形的条件是(  )
A.OA=OC,AD∥BCB.∠ABC=∠ADC,AD∥BC
C.AB=DC,AD=BCD.∠ABD=∠ADB,∠BAO=∠DCO

查看答案和解析>>

同步练习册答案