精英家教网 > 初中数学 > 题目详情
已知:如图,Rt△ABC中,∠ACB=90°,AC=BC,将直角三角板中45°角的顶点放在点C处,并将三角板绕点C旋转,三角板的两边分别交AB边于D、E两点(点D在点E的左侧,并且精英家教网点D不与点A重合,点E不与点B重合),设AD=m,DE=x,BE=n.
(1)判断以m、x、n为三边长组成的三角形的形状,并说明理由;
(2)当三角板旋转时,找出AD、DE、BE三条线段中始终最长的线段,并说明理由.
分析:(1)作△CAD关于CD所在直线的轴对称三角形CFD,连接EF.可证明∠3=∠4,即可证明△FCE≌△BCE,则FE=BE=n,∠CFE=∠B=45°,∠DFE=∠CFD+∠CFE=90°,即可得出结论;
(2)根据FD=AD,FE=BE,则AD、DE、BE的三条线段中,始终最长的是DE.
解答:精英家教网解:(1)结论:以m、x、n为三边长组成的三角形是直角三角形.
证明:如图,作△CAD关于CD所在直线的轴对称三角形CFD,连接EF.
则CF=CA,DF=DA=m,∠2=∠1,∠CFD=∠A=45°,
∵AC=BC,∴CF=CB,
∵∠ACB=90°,∠DCE=45°,
∴∠2+∠3=45°,∠1+∠4=45°.
∴∠3=∠4,
在△ECF和△BCE中,
CF=CB
∠3=∠4
CE=CE

∴△FCE≌△BCE,
∴FE=BE=n,∠CFE=∠B=45°,
∴∠DFE=∠CFD+∠CFE=90°.
∴△DEF是直角三角形,即以m、x、n为三边长组成的三角形是直角三角形.

(2)∵(1)中Rt△DEF的DE为斜边,FD=AD,FE=BE,
∴AD、DE、BE的三条线段中,始终最长的是DE.
点评:本题考查了全等三角形的判定和性质以及旋转的性质,是基础知识要熟练掌握.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

22、已知:如图,Rt△ABC≌Rt△ADE,∠ABC=∠ADE=90°,试以图中标有字母的点为端点,连接两条线段,如果你所连接的两条线段满足相等,垂直或平行关系中的一种,那么请你把它写出来并证明.

查看答案和解析>>

科目:初中数学 来源: 题型:

20、已知:如图,Rt△ABC中,∠ACB=90°,AC=BC,点D为AB边上一点,且不与A、B两点重合,AE⊥AB,AE=BD,连接DE、DC.
(1)求证:△ACE≌△BCD;
(2)猜想:△DCE是
等腰直角
三角形;并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,Rt△AOB的两直角边OA、OB分别在x轴的正半轴和y轴的负半轴上,C为OA上一点且O精英家教网C=OB,抛物线y=(x-2)(x-m)-(p-2)(p-m)(m、p为常数且m+2≥2p>0)经过A、C两点.
(1)用m、p分别表示OA、OC的长;
(2)当m、p满足什么关系时,△AOB的面积最大.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网已知:如图,Rt△ABC和Rt△ADC,∠ABC=∠ADC=90°,点E是AC的中点.
求证:∠EBD=∠EDB.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网已知:如图,Rt△ABC中,∠C=90°,M是AB的中点,AM=AN,MN∥AC.
求证:MN=AC.

查看答案和解析>>

同步练习册答案