精英家教网 > 初中数学 > 题目详情
已知关于的方程:①和②,其中.
(1)求证:方程①总有两个不相等的实数根;
(2)设二次函数的图象与轴交于两点(点在点的左侧),将两点按照相同的方式平移后,点落在点处,点落在点处,若点的横坐标恰好是方程②的一个根,求的值;
(3)设二次函数,在(2)的条件下,函数的图象位于直线左侧的部分与直线)交于两点,当向上平移直线时,交点位置随之变化,若交点间的距离始终不变,则的值是________________.
(1)证明见解析;(2)3;(3).

试题分析:(1)证明方程根的判别式大于0即可.
(2)根据平移的性质,得到点平移后的坐标,由点的横坐标恰好是方程②的一个根,代入求解即可.
(3)求出过两抛物线的顶点的直线的即为所求.
试题解析:(1)
知必有,故.
∴方程①总有两个不相等的实数根.
(2)令,依题意可解得.
∵平移后,点落在点处,
∴平移方式是将点向右平移2个单位,再向上平移3个单位得到.
∴点按相同的方式平移后,点.
则依题意有.
解得(舍负).
的值为3.
(3)在(2)的条件下,
两抛物线的顶点坐标分别为,则过这两点的直线解析式为.
.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

如图①,已知二次函数的解析式是y=ax2+bx(a>0),顶点为A(1,-1).
(1)a=   
(2)若点P在对称轴右侧的二次函数图像上运动,连结OP,交对称轴于点B,点B关于顶点A的对称点为C,连接PC、OC,求证:∠PCB=∠OCB;
(3)如图②,将抛物线沿直线y=-x作n次平移(n为正整数,n≤12),顶点分别为A1,A2,…,An,横坐标依次为1,2,…,n,各抛物线的对称轴与x轴的交点分别为D1,D2,…,Dn,以线段AnDn为边向右作正方形AnDnEnFn,是否存在点Fn恰好落在其中的一个抛物线上,若存在,求出所有满足条件的正方形边长;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

若两个二次函数图象的顶点,开口方向都相同,则称这两个二次函数为“同簇二次函数”。
(1)请写出两个为“同簇二次函数”的函数;
(2)已知关于x的二次函数y1=2x2—4mx+2m2+1,和y2=ax2+bx+5,其中y1的图象经过点A(1,1),若y1+y2为y1为“同簇二次函数”,求函数y2的表达式,并求当0≤x≤3时,y2的最大值。

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

二次函数y=ax2+bx+c(a≠0)的图象如图所示,对称轴是直线x=1,则下列四个结论错误的是(  )
A.c>0 B.2a+b=0C.b2﹣4ac>0 D.a﹣b+c>0

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

二次函数的顶点坐标为          .

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

正方形ABCD的边长为1cm,M、N分别是BC.CD上两个动点,且始终保持AM⊥MN,当BM=       cm时,四边形ABCN的面积最大,最大面积为       cm2

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,在平面直角坐标系xOy中,已知抛物线(0≤x≤3)在x轴上方的部分,记作C1,它与x轴交于点O,A1,将C1绕点A1旋转180°得C2,C2与x 轴交于另一点A2.请继续操作并探究:将C2绕点A2旋转180°得C3,与x 轴交于另一点A3;将C3绕点A2旋转180°得C4,与x 轴交于另一点A4,这样依次得到x轴上的点A1,A2,A3,…,An,…,及抛物线C1,C2,…,Cn,….则点A4的坐标为         ;Cn的顶点坐标为               (n为正整数,用含n的代数式表示) .

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

当-2≤x≤l时,二次函数有最大值4,则实数m的值为(  )
(A)     (B)   (c)2或  (D)2或

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,二次函数的图象,记为C1,它与x轴交于点O,A1;将C1绕点A1旋转180°得C2,交x轴于点A2;将C2绕点A2旋转180°得C3,交x轴于点A3;……如此进行下去,直至得C14. 若P(27,m)在第14段图象C14上,则m=       

查看答案和解析>>

同步练习册答案