精英家教网 > 初中数学 > 题目详情

【题目】小明在暑期社会实践活动中,以每千克0.8元的价格从批发市场购进若干千克西瓜到市场上去销售,在销售了40千克西瓜之后,余下的每千克降价0.4元,全部售完.销售金额与售出西瓜的千克数之间的关系如图所示.请你根据图象提供的信息完成以下问题:

(1)求降价前销售金额y()与售出西瓜x(千克)之间的函数关系式.

(2)小明从批发市场共购进多少千克西瓜?

(3)小明这次卖瓜赚了多少钱?

【答案】(1)y=1.6x;(2)50千克;(3)36

【解析】

(1)设yx的函数关系式为y=kx,把已知坐标代入解析式可解;

(2)降价前西瓜售价每千克1.6元.降价0.4元后西瓜售价每千克1.2元,故可求出降价后销售的西瓜,从而问题得解

(3)用销售总金额减去购西瓜的费用即可求得利润

(1)设关系式是y=kx,x=40,y=64代入得40k=64,解得k=1.6,

则关系式是y=1.6x;

(2)因为降价前西瓜售价为每千克1.6

所以降价0.4元后西瓜售价每千克1.2

降价后销售的西瓜为(76- 64)÷1.2=10(千克),所以小明从批发市场共购进50千克西瓜

(3)76- 50×0.8=76- 40=36(),即小明这次卖西瓜赚了36元钱.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】一套三角尺(分别含的角)按如图所示摆放在量角器上,边与量角器刻度线重合,边与量角器刻度线重合,将三角尺绕量角器中心点以每秒的速度顺时针旋转,当边刻度线重合时停止运动,设三角尺的运动时间为

1)当时,边经过的量角器刻度线对应的度数是 度;

2)若在三角尺开始旋转的同时,三角尺也绕点以每秒的速度逆时针旋转,当三角尺停止旋转时,三角尺也停止旋转.

①当为何值时,边平分

②在旋转过程中,是否存在某一时刻使,若存在,请求出的值;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为支援四川抗震救灾,某省某市A、B、C三地分别有赈灾物资100吨、100吨、80吨,需要全部运往四川重灾区的甲、乙两县.根据灾区的情况,这批赈灾物资运往甲县的数量比运往乙县的数量的2倍少20吨.

(1)求这批赈灾物资运往甲、乙两县的数量各是多少吨?

(2)若要求C地运往甲县的赈灾物资为60吨,A地运往甲县的赈灾物资为x吨(x为整数),B地运往甲县的赈灾物资数量少于A地运往甲县的赈灾物资数量的2倍,其余的赈灾物资全部运往乙县,且B地运往乙县的赈灾物资数量不超过25吨.则A、B两地的赈灾物资运往甲、乙两县的方案有几种?

(3)已知A、B、C三地的赈灾物资运往甲、乙两县的费用如表:

A

B

C

运往甲县的费用(元/吨)

220

200

200

运往乙县的费用(元/吨)

250

220

210

为及时将这批赈灾物资运往甲、乙两县,某公司主动承担运送这批物资的总费用,在(2)的要求下,该公司承担运送这批赈灾物资的总费用最多是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】一列快车从甲地驶往乙地,一列慢车从乙地驶往甲地,两车同时出发,设慢车行驶的时间为x(h),两车之间的距离为y,图中的折线表示yx之间的函数关系.

(1)甲、乙两地之间的距离为 千米;图中点B的实际意义是

(2)求线段BC所表示的yx之间的函数关系式,并写出自变量x的取值范围;

(3)若第二列快车也从甲地出发驶往乙地,速度与第一列快车相同.在第一列快车与慢车相遇30分钟后,第二列快车与慢车相遇.求第二列快车比第一列快车晚出发多少小时?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,正方形ABCD四个顶点都在⊙O上,点P是在弧AB上的一点,则∠CPD的度数是(
A.35°
B.40°
C.45°
D.60°

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知∠1+∠2=180°,∠DAE=∠BCF.

(1)试判断直线AE与CF有怎样的位置关系?并说明理由;
(2)若∠BCF=70°,求∠ADF的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,AB=AC,BC=24,tanC=2,如果将△ABC沿直线l翻折后,点B落在边AC的中点E处,直线l与边BC交于点D,那么BD的长为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知△ABC和△ADE均为等边三角形,BD、CE交于点F.

(1)求证:BD=CE;(2)求锐角∠BFC的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,抛物线y= x2 x﹣9与x轴交于A、B两点,与y轴交于点C,连接BC、AC.

(1)求AB和OC的长;
(2)点E从点A出发,沿x轴向点B运动(点E与点A、B不重合),过点E作直线l平行BC,交AC于点D.设AE的长为m,△ADE的面积为s,求s关于m的函数关系式,并写出自变量m的取值范围;
(3)在(2)的条件下,连接CE,求△CDE面积的最大值;此时,求出以点E为圆心,与BC相切的圆的面积(结果保留π).

查看答案和解析>>

同步练习册答案