精英家教网 > 初中数学 > 题目详情
直线CD经过∠BCA的顶点C,CA=CB,E、F是直线CD上两点,∠BEC=∠CFA=∠α。
(1)若直线CD经过∠BCA的内部,且点E、F在射线CD上,请解决下面两个问题:
①如图(1),若∠BCA=90°,∠α=90°,则EF______|BE-AF|(填 “<”“>”或“=”);
②如图(2),当0°<∠BCA< 180°时,若使①中的结论仍然成立,则∠α与∠BCA应满足的关系是____;
(2)如图(3),若直线CD经过∠BCA的外部,且∠α=∠BCA,请探究EF、BE、AF三条线段的数量关系,并给予证明。
解:(1)①=;
②∠α+∠BCA=180°;
(2)EF=BE+AF,
证明:∵∠l +∠2 +∠BCA=180°,
∠2+∠3+∠CFA=180°,
∵∠BCA=∠α=∠CFA,
∴∠l=∠3,
∵∠BEC=∠CFA=∠α,CB=CA,
∴△BEC≌△CFA,
∴BE=CF,EC=AF,
∴ EF=EC+CF=BE+AF。
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

29、如图,CD是经过∠BCA顶点C的一条直线,且直线CD经过∠BCA的内部,点E,F在射线CD上,已知CA=CB且∠BEC=∠CFA=∠α.
(1)如图1,若∠BCA=90°,∠α=90°,问EF=BE-AF,成立吗?说明理由.
(2)将(1)中的已知条件改成∠BCA=60°,∠α=120°(如图2),问EF=BE-AF仍成立吗?说明理由.
(3)若0°<∠BCA<90°,请你添加一个关于∠α与∠BCA关系的条件,使结论EF=BE-AF仍然成立.你添加的条件是
∠α+∠BCA=180°
.(直接写出结论)

查看答案和解析>>

科目:初中数学 来源: 题型:

24、CD经过∠BCA顶点C的一条直线,CA=CB.E,F分别是直线CD上两点,且∠BEC=∠CFA=∠α.

(1)若直线CD经过∠BCA的内部,且E,F在射线CD上,请解决下面两个问题:
①如图1,若∠BCA=90°,∠α=90°,
则BE
=
CF;EF
=
|BE-AF|(填“>”,“<”或“=”);
②如图2,若0°<∠BCA<180°,请添加一个关于∠α与∠BCA关系的条件
∠α+∠BCA=180°
,使①中的两个结论仍然成立,并证明两个结论成立.
(2)如图3,若直线CD经过∠BCA的外部,∠α=∠BCA,请提出EF,BE,AF三条线段数量关系的合理猜想(不要求证明).

查看答案和解析>>

科目:初中数学 来源: 题型:

28、CD是经过∠BCA顶点C的一条直线,CA=CB,E、F分别是直线CD上两点,且∠BEC=∠CFA=∠α.
(1)如图(1),若直线CD经过∠BCA的内部,且E、F在射线CD上,当∠BCA=∠α=90°时,线段BE与CF有怎样的大小关系?并说明理由.
(2)如图(2),若直线CD经过∠BCA的外部,当∠BCA=∠α>90°时,则EF、BE、AF三条线段之间有怎样的数量关系?并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

24、直线CD经过∠BCA的顶点C,CA=CB.E、F分别是直线CD上两点,且∠BEC=∠CFA=∠α.
(1)若直线CD经过∠BCA的内部,且E、F在射线CD上,请解决下面两个问题:
①如图1,若∠BCA=90°,∠α=90°,则EF
=
|BE-AF|(填“>”,“<”或“=”号);
②如图2,若0°<∠BCA<180°,若使①中的结论仍然成立,则∠α与∠BCA应满足的关系是
∠α+∠BCA=180°

(2)如图3,若直线CD经过∠BCA的外部,∠α=∠BCA,请探究EF、与BE、AF三条线段的数量关系,并给予证明.

查看答案和解析>>

科目:初中数学 来源: 题型:

CD是经过∠BCA的顶点C的一条直线,CA=CB,E、F分别是直线CD上两点,且∠BEC=∠CFA=∠α,若直线CD经过∠BCA的内部,且E、F在射线C、D上,请解答下面的三个问题:
(1)如图1,若∠BCA=90°,∠α=90°,则∠BCE
=
=
∠CAF;BE
=
=
CF(填“>”、“<”、“=”);并证明这两个结论.
(2)如图2,若∠BCA=80°,要使∠BCE与∠CAF有(1)中的结论,则∠α=
100
100

(3)如图2,若0°<∠BCA<180°,当∠α与∠BCA满足什么关系时,则(1)中的两个结论仍然成立.这个关系是
∠α+∠BCA=180°
∠α+∠BCA=180°
.(只填结论,不用证明)

查看答案和解析>>

同步练习册答案