分析 (1)先变形为(x-3)2=4,然后利用直接开平方法解方程;
(2)利用配方法得到(x-$\frac{3}{2}$)2=$\frac{21}{16}$,然后利用直接开平方法解方程;
(3)先移项得到(2x-3)2-5(2x-3)=0,然后利用因式分解法解方程;
(4)利用求根公式法解方程.
解答 解:(1)(x-3)2=4,
x-3=±2,
所以x1=5,x2=1;
(2)x2-$\frac{3}{2}$x=$\frac{3}{4}$,
x2-$\frac{3}{2}$x+$\frac{9}{16}$=$\frac{21}{16}$,
(x-$\frac{3}{4}$)2=$\frac{21}{16}$,
x-$\frac{3}{4}$=±$\frac{\sqrt{21}}{4}$,
所以x1=$\frac{3+\sqrt{21}}{4}$,x2=$\frac{3-\sqrt{21}}{4}$;
(3)(2x-3)2-5(2x-3)=0,
(2x-3)(2x-3-5)=0,、
2x-3=0或2x-3-5=0,
所以x1=$\frac{3}{2}$,x2=4;
(4)△=(-3)2-4×2×(-5)=49,
x=$\frac{3±\sqrt{49}}{2×2}$=$\frac{3±7}{4}$,
所以x1=$\frac{5}{2}$,x2=-1.
点评 本题考查了解一元二次方程-因式分解法:就是先把方程的右边化为0,再把左边通过因式分解化为两个一次因式的积的形式,那么这两个因式的值就都有可能为0,这就能得到两个一元一次方程的解,这样也就把原方程进行了降次,把解一元二次方程转化为解一元一次方程的问题了(数学转化思想).也考查了配方法和公式法解一元二次方程.
科目:初中数学 来源: 题型:选择题
A. | 3 | B. | ±3 | C. | 9 | D. | ±9 |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com