精英家教网 > 初中数学 > 题目详情
(2013•河北一模)如图,已知直线y=x+4与两坐???轴分别交于A、B两点,⊙C的圆心坐标为 (2,O),半径为2,若D是⊙C上的一个动点,线段DA与y轴交于点E,则△ABE面积的最小值和最大值分别是
8-2
2
和8+2
2
8-2
2
和8+2
2
分析:求出OA、OB值,根据已知得出求出BE的最大值和最小值即可,过A作⊙C的两条切线,连接OD′,OD,求出AC,根据切线性质设E′O=E′D′=x,根据sin∠CAD′=
OE′
AE′
,代入求出x,即可求出BE的最大值和最小值,根据三角形的面积公式求出即可.
解答:解:y=x+4,
∵当x=0时,y=4,当y=0时,x=-4,
∴OA=4,OB=4,
∵△ABE的边BE上的高是OA,
∴△ABE的边BE上的高是4,
∴要使△ABE的面积最大或最小,只要BE取最大值或最小值即可,
过A作⊙C的两条切线,如图,
当在D点时,BE最小,即△ABE面积最小;
当在D′点时,BE最大,即△ABE面积最大;
∵x轴⊥y轴,OC为半径,
∴EE′是⊙C切线,
∵AD′是⊙C切线,
∴OE′=E′D′,
设E′O=E′D′=x,
∵AC=4+2=6,CD′=2,AD′是切线,
∴∠AD′C=90°,由勾股定理得:AD′=4
2

∴sin∠CAD′=
D′C
AC
=
OE′
AE′

2
6
=
x
4
2
-x

解得:x=
2

∴BE′=4+
2
,BE=4-
2

∴△ABE的最小值是
1
2
×(4-
2
)×4=8-2
2

最大值是:
1
2
×(4+
2
)×4=8+2
2

故答案为:8-2
2
和8+2
2
点评:本题考查了切线的性质和判定,三角形的面积,锐角三角函数的定义等知识点,解此题的关键是找出符合条件的D的位置,题目比较好,有一定的难度.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2013•河北一模)在
1
2
,0,
1
3
,-1这四个数中,最小的数是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•河北一模)下列运算中,正确的是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•河北一模)南海是我国固有领海,南海的面积超过东海、黄海、渤海面积的总和,约为360万平方千米,360万平方千米用科学记数法可表示为(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•河北一模)如图是婴儿车的平面示意图,其中AB∥CD,∠1=120°,∠3=40°,那么∠2的度数为(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•河北一模)如图,△ABC内接于⊙O,若∠OAB=28°,则∠C的大小为(  )

查看答案和解析>>

同步练习册答案