精英家教网 > 初中数学 > 题目详情

【题目】在北京2008年第29届奥运会前夕,某超市在销售中发现:奥运会吉祥物— “福娃”平均每天可售出20套,每件盈利40元。为了迎接奥运会,商场决定采取适当的降价措施,扩大销售量,增加盈利,尽快减少库存。经市场调查发现:如果每套降价4元,那么平均每天就可多售出8套。要想平均每天在销售吉祥物上盈利1200元,那么每套应降价多少?

【答案】解:设每套降价x元,

由题意得:(40-x)(20+2x)=1200

即2x2-60x+400=0,

∴x2-30x+200=0,

∴(x-10)(x-20)=0,

解之得:x=10或x=20

为了减少库存,所以x=20.

因此,每套应降价20元


【解析】此题的等量关系是:每件的利润销售量=1200。设每套降x元,每件的利润=40-x,根据如果每套降价4元,那么平均每天就可多售出8套,则就要多售出8=2x,销售量=20+2x,列方程求解,然后根据扩大销售量,增加盈利,尽快减少库存。取值即可。

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,BD是△ABC的角平分线,点E,F分别在BC,AB上,且DE∥AB,BE=AF.

(1)求证:四边形ADEF是平行四边形;
(2)若∠ABC=60°,BD=4,求平行四边形ADEF的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】请你补全证明过程:如图,DGBCACBCEFAB,∠1=2,求证:EFCD

证明:∵DGBCACBC(已知)

∴∠DGB=90°,∠ACB=90°①(

∴∠DGB=ACB ( )

DGAC ( )

∴∠2= ________ ⑤(

又∠1=2 ⑥(

∴∠1=DCA ⑦(

EFCD ⑧(

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在正△ABC中,D,E分别在AC,AB上,且 ,AE=BE,则有( )

A.△AED∽△ABC
B.△ADB∽△BED
C.△BCD∽△ABC
D.△AED∽△CBD

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】计算: .

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,二次函数 的图象经过坐标原点,与x轴的另一个交点为A(-2,0).

(1)求二次函数的解析式
(2)在抛物线上是否存在一点P,使△AOP的面积为3,若存在请求出点P的坐标,若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】阅读材料,解决下列问题:

材料一:对非负实数x“四舍五入到个位的值记为,即:当n为非负整数时,如果,则;反之,当n为非负整数时,如果;则,例如:

材料二:平面直角坐标系中任意两点,我们把叫做两点间的折线距离,并规定是一定点,是直线上的一动点,我们把的最小值叫做到直线的折线距离,例如:若

如果,写出实数x的取值范围;已知点,点,且,求a的值.

m为满足的最大值,求点到直线的折线距离.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】初三年级的一场篮球比赛中,如图队员甲正在投篮,已知球出手时离地面高 m,与篮圈中心的水平距离为7m,当球出手后水平距离为4m时到达最大高度4m,设篮球运行的轨迹为抛物线,篮圈距地面3m.

(1)建立如图所示的平面直角坐标系,求抛物线的解析式并判断此球能否准确投中?
(2)此时,若对方队员乙在甲前面1m处跳起盖帽拦截,已知乙的最大摸高为3.1m,那么他能否获得成功?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,一次函数的图象与反比例函数的图象交于第二、四象限内的A,B两点,与x轴交于点C,与y轴交于点D,点B的坐标是(m,﹣4),连接AO,AO=5,sin∠AOC=

(1)求反比例函数的解析式;
(2)连接OB,求△AOB的面积.

查看答案和解析>>

同步练习册答案