精英家教网 > 初中数学 > 题目详情
2.有一科技小组进行了机器人行走性能试验,在试验场地有A、B、C三点顺次在同一笔直的赛道上,甲、乙两机器人分别从A、B两点同时同向出发,历时7分钟同时到达C点,乙机器人始终以60米/分的速度行走,如图是甲、乙两机器人之间的距离y(米)与他们的行走时间x(分钟)之间的函数图象,请结合图象,回答下列问题:
(1)A、B两点之间的距离是70米,甲机器人前2分钟的速度为95米/分;
(2)若前3分钟甲机器人的速度不变,求线段EF所在直线的函数解析式;
(3)若线段FG∥x轴,则此段时间,甲机器人的速度为60米/分;
(4)求A、C两点之间的距离;
(5)若前3分钟甲机器人的速度不变,直接写出两机器人出发多长时间相距28米.

分析 (1)结合图象得到A、B两点之间的距离,甲机器人前2分钟的速度;
(2)根据题意求出点F的坐标,利用待定系数法求出EF所在直线的函数解析式;
(3)根据一次函数的图象和性质解答;
(4)根据速度和时间的关系计算即可;
(5)分前2分钟、2分钟-3分钟、4分钟-7分钟三个时间段解答.

解答 解:(1)由图象可知,A、B两点之间的距离是70米,
甲机器人前2分钟的速度为:(70+60×2)÷2=95米/分;
(2)设线段EF所在直线的函数解析式为:y=kx+b,
∵1×(95-60)=35,
∴点F的坐标为(3,35),
则$\left\{\begin{array}{l}{2k+b=0}\\{3k+b=35}\end{array}\right.$,
解得,$\left\{\begin{array}{l}{k=35}\\{b=-70}\end{array}\right.$,
∴线段EF所在直线的函数解析式为y=35x-70;
(3)∵线段FG∥x轴,
∴甲、乙两机器人的速度都是60米/分;
(4)A、C两点之间的距离为70+60×7=490米;
(5)设前2分钟,两机器人出发x分钟相距28米,
由题意得,60x+70-95x=28,
解得,x=1.2,
前2分钟-3分钟,两机器人相距28米时,
35x-70=28,
解得,x=2.8.
4分钟-7分钟,直线GH经过点(4,35)和点(7,0),
则直线GH的方程为y=-$\frac{35}{3}$x+$\frac{245}{3}$,
当y=28时,解得x=4.6,
答:两机器人出发1.2分或2.8分或4.6分相距28米.

点评 本题考查的是一次函数的综合运用,掌握待定系数法求一次函数解析式、正确列出一元一次方程、灵活运用数形结合思想是解题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:选择题

12.如图,直线a∥b,△ABC为等腰直角三角形,∠BAC=90°,则∠1的度数是(  )
A.22.5°B.36°C.45°D.90°

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

13.已知:△ABC内接于⊙O,D是$\widehat{BC}$上一点,OD⊥BC,垂足为H.
(1)如图1,当圆心O在AB边上时,求证:AC=2OH;
(2)如图2,当圆心O在△ABC外部时,连接AD、CD,AD与BC交于点P,求证:∠ACD=∠APB;
(3)在(2)的条件下,如图3,连接BD,E为⊙O上一点,连接DE交BC于点Q、交AB于点N,连接OE,BF为⊙O的弦,BF⊥OE于点R交DE于点G,若∠ACD-∠ABD=2∠BDN,AC=5$\sqrt{5}$,BN=3$\sqrt{5}$,tan∠ABC=$\frac{1}{2}$,求BF的长.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

10.如图,P1、P2是反比例函数y=$\frac{k}{x}$(k>0)在第一象限图象上的两点,点A1的坐标为(4,0).若△P1OA1与△P2A1A2均为等腰直角三角形,其中点P1、P2为直角顶点.
(1)求反比例函数的解析式.
(2)①求P2的坐标.
②根据图象直接写出在第一象限内当x满足什么条件时,经过点P1、P2的一次函数的函数值大于反比例函数y=$\frac{k}{x}$的函数值.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

17.如图,AB∥CD,射线AE交CD于点F,若∠1=115°,则∠2的度数是(  )
A.55°B.65°C.75°D.85°

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

7.若点O是等腰△ABC的外心,且∠BOC=60°,底边BC=2,则△ABC的面积为(  )
A.2+$\sqrt{3}$B.$\frac{2\sqrt{3}}{3}$C.2+$\sqrt{3}$或2-$\sqrt{3}$D.4+2$\sqrt{3}$或2-$\sqrt{3}$

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

14.方程$\sqrt{x-1}$=2的解是x=5.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

11.一个长方形的周长为30cm,若这个长方形的长减少1cm,宽增加2cm就可成为一个正方形,设长方形的长为xcm,可列方程为(  )
A.x+1=(30-x)-2B.x+1=(15-x)-2C.x-1=(30-x)+2D.x-1=(15-x)+2

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

12.把一副普通扑克牌中的数字2,3,4,5,6,7,8,9,10的9张牌洗均匀后正面向下放在桌面上,从中随机抽取一张,抽出的牌上的数恰为3的倍数的概率是$\frac{1}{3}$.

查看答案和解析>>

同步练习册答案