【题目】已知:如图,在△ABC中,∠A=30°,∠B=60°.
(1)作∠B的平分线BD,交AC于点D;作AB的中点E(要求:尺规作图,保留作图痕迹,不必写作法和证明);
(2)连接DE,求证:△ADE≌△BDE.
【答案】(1)详见解析;(2)详见解析.
【解析】
试题分析:(1)①以B为圆心,任意长为半径画弧,交AB、BC于F、N,再以F、N为圆心,大于FN长为半径画弧,两弧交于点M,过B、M画射线,交AC于D,线段BD就是∠B的平分线;
②分别以A、B为圆心,大于AB长为半径画弧,两弧交于X、Y,过X、Y画直线与AB交于点E,点E就是AB的中点;(2)首先根据角平分线的性质可得∠ABD的度数,进而得到∠ABD=∠A,根据等角对等边可得AD=BD,再加上条件AE=BE,ED=ED,即可利用SSS证明△ADE≌△BDE.
试题解析:(1)作出∠B的平分线BD;作出线段AB垂直平分线交AB于点E,点E是线段AB的中点.
(2)证明:
∵∠ABD=×60°=30°,∠A=30°,
∴∠ABD=∠A,
∴AD=BD,
在△ADE和△BDE中
∴△ADE≌△BDE(SSS).
科目:初中数学 来源: 题型:
【题目】如图,在扇形OAB中,∠AOB=90°,半径OA=6.将扇形OAB沿过点B的直线折叠,点O恰好落在弧AB上点D处,折痕交OA于点C,则有下列选项:
①∠ACD=60°;
②CB=6;
③阴影部分的周长为12+3π;
④阴影部分的面积为9π﹣12.
其中正确的是 (填写编号).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在正方形ABCD中,点P是AB上一动点(不与A,B重合),对角线AC,BD相交于点O,过点P分别作AC,BD的垂线,分别交AC,BD于点E,F,交AD,BC于点M,N.下列结论:①△APE≌△AME;②PM+PN=AC;③PE2+PF2=PO2;④△POF∽△BNF;⑤当△PMN∽△AMP时,点P是AB的中点.其中正确的结论的个数有( )个.
A.5 B.4 C.3 D.2
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,AC=BC,以AB为直径的⊙O交AC边于点D,点E在BC上,连结BD,DE,∠CDE=∠ABD.
(1)证明:DE是⊙O的切线;
(2)若BD=12,sin∠CDE=,求圆O的半径和AC的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】猜想:如图①,在ABCD中,点O是对角线AC的中点,过点O的直线分别交AD、BC于点E、F.若ABCD的面积是10,则四边形CDEF的面积是 .
探究:如图②,在菱形ABCD中,对角线AC、BD相交于点O,过点O的直线分别交AD、BC于点E、F.若AC=4,BD=8,求四边形ABFE的面积.
应用:如图③,在Rt△ABC中,∠BAC=90°,延长BC到点D,使DC=BC,连结AD.若AC=4,,则△ABD的面积是 .
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com