精英家教网 > 初中数学 > 题目详情

【题目】如图,抛物线yx2+bx+c与直线yx+3分别相交于AB两点,且此抛物线与x轴的一个交点为C,连接ACBC.已知A03),C(﹣30).

1)求抛物线的解析式;

2)在抛物线对称轴l上找一点M,使|MBMC|的值最大,并求出这个最大值;

3)点Py轴右侧抛物线上一动点,连接PA,过点PPQPAy轴于点Q,问:是否存在点P使得以APQ为顶点的三角形与△ABC相似?若存在,请求出所有符合条件的点P的坐标;若不存在,请说明理由.

【答案】1yx2+x+3;(2|MBMC|取最大值为;(3)存在,点P16).

【解析】

1)①将A03),C-30)代入y=x2+bx+c,即可求解;

2)分当点BCM三点不共线时、当点BCM三点共线时,两种情况分别求解即可;

3)分当时、当时两种情况,分别求解即可.

1)将A03),C(﹣30)代入yx2+bx+c

解得

∴抛物线的解析式是yx2+x+3

2)将直线yx+3表达式与二次函数表达式联立并解得:x0或﹣4

A 03),

B(﹣41

①当点BCM三点不共线时,

|MBMC|BC

②当点BCM三点共线时,

|MBMC|BC

∴当点、CM三点共线时,|MBMC|取最大值,即为BC的长,

过点Bx轴于点E

RtBEC中,由勾股定理得BC

|MBMC|取最大值为

3)存在点P使得以APQ为顶点的三角形与ABC相似.

设点P坐标为(xx2+x+3)(x0

RtBEC中,

BECE1

∴∠BCE45°

RtACO中,

AOCO3

∴∠ACO45°

∴∠ACB180°450450900AC3

过点PPQPA于点P,则∠APQ90°,过点PPQy轴于点G

∵∠PQA=∠APQ90°

PAG=∠QAP

∴△PGA∽△QPA

∵∠PGA=∠ACB90°

∴①当时,

PAG∽△BAC

解得x11x20,(舍去)

∴点P的纵坐标为×12+×1+36

∴点P为(16);

②当时,

PAG∽△ABC

解得x1=﹣(舍去),x20(舍去),

∴此时无符合条件的点P

综上所述,存在点P16).

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,等边三角形△ABC的边长为6lAC边上的高BF所在的直线,点D为直线l上的一动点,连接AD,并将AD绕点A逆时针旋转60°AE,连接EF,则EF的最小值为_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,旗杆AB的顶端B在夕阳的余辉下落在一个斜坡上的点D处,某校数学课外兴趣小组的同学正在测量旗杆的高度,在旗杆的底部A处测得点D的仰角为15°,AC10米,又测得∠BDA45°.已知斜坡CD的坡度为i1,求旗杆AB的高度(,结果精确到个位).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某班为参加学校的大课间活动比赛,准备购进一批跳绳,已知2型跳绳和1型跳绳共需56元,1型跳绳和2型跳绳共需82元.

1)求一根型跳绳和一根型跳绳的售价各是多少元?

2)学校准备购进这两种型号的跳绳共50根,并且型跳绳的数量不多于型跳绳数量的3倍,请设计出最省钱的购买方案,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】齐齐哈尔市教育局想知道某校学生对扎龙自然保护区的了解程度,在该校随机抽取了部分学生进行问卷,问卷有以下四个选项:A.十分了解;B.了解较多:C.了解较少:D.不了解(要求:每名被调查的学生必选且只能选择一项).现将调查的结果绘制成两幅不完整的统计图.请根据两幅统计图中的信息回答下列问题:

1)本次被抽取的学生共有_______名;

2)请补全条形图;

3)扇形图中的选项“C.了解较少”部分所占扇形的圆心角的大小为_______°;

4)若该校共有名学生,请你根据上述调查结果估计该校对于扎龙自然保护区“十分了解”和“了解较多”的学生共有多少名?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,在平面直角坐标系xOy中,半径为1的⊙Ox轴正半轴和y轴正半轴分别交于AB两点,直线lykx+2k0)与x轴和y轴分别交于PM两点.

1)当直线与⊙O相切时,求出点M的坐标和点P的坐标;

2)如图2,当点P在线段OA上时,直线1与⊙O交于EF两点(点E在点F的上方)过点FFCx轴,与⊙O交于另一点C,连结ECy轴于点D

①如图3,若点P与点A重合时,求OD的长并写出解答过程;

②如图2,若点P与点A不重合时,OD的长是否发生变化,若不发生变化,请求出OD的长并写出解答过程;若发生变化,请说明理由.

3)如图4,在(2)的基础上,连结BF,将线段BF绕点B逆时针旋转90°BQ,若点QCE的延长线时,请用等式直接表示线段FCFQ之间的数量关系.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】学校植物园沿路护栏的纹饰部分设计成若干个全等菱形图案,每增加一个菱形图案,纹饰长度就增加dcm,如图所示,已知每个菱形图案的边长为10cm,其中一个内角为60°.

(1)求一个菱形图案水平方向的对角线长;

(2)d26,纹饰的长度L能否是6010cm?若能,求出菱形个数;若不能,说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】将两块直角三角板如图1放置,等腰直角三角板的直角顶点是点,直角板的直角顶点上,且.三角板固定不动,将三角板绕点逆时针旋转,旋转角为

1)当_______时,

2)当时,三角板绕点逆时针旋转至如图2位置,设交于点于点,求四边形的面积.

3)如图3,设,四边形的面积为,求关于的表达式(不用写的取值范围).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,抛物线 x轴相交于AB两点,与y轴交于C,顶点为D,抛物线的对称轴DFBC相交于点E,与x轴相交于点F

1)求线段DE的长;

2)设过E的直线与抛物线相交于M(x1y1)N(x2y2),试判断当|x1x2|的值最小时,直线MNx轴的位置关系,并说明理由;

3)设Px轴上的一点,∠DAO+DPO=α,当tanα=4时,求点P的坐标.

查看答案和解析>>

同步练习册答案