精英家教网 > 初中数学 > 题目详情

【题目】矩形纸片ABCD中,AB=5,AC=3,将纸片折叠,使点B落在边CD上的B′处,折痕为AE.在折痕AE上存在一点P到边CD的距离与到点B的距离相等,则此相等距离为

【答案】
【解析】解:如图所示,设PF⊥CD,

∵BP=FP,

由翻折变换的性质可得BP=B′P,

∴FP=B′P,

∴FP⊥CD,

∴B′,F,P三点构不成三角形,

∴F,B′重合分别延长AE,CD相交于点G,

∵AB∥CD,

∴∠BAG=∠AGD,

∵∠BAG=∠B′AG,

∴∠AGD=∠B′AG,

∴GB′=AB′=AB=5,

∵PB′(PF)⊥CD,

∴PB′∥AC,

∴△ACG∽△PB′G,

∵Rt△ACB′中,AB′=AB=5,AC=3,

∴B′C= =4,

∴CB′=5﹣4=1,CG=CB′+B′G=4+5=9,

∴△ACG与△PB′G的相似比为9:5,

∴AC:PB′=9:5,

∵AC=3,

∴PB′=

所以答案是:

【考点精析】通过灵活运用翻折变换(折叠问题),掌握折叠是一种对称变换,它属于轴对称,对称轴是对应点的连线的垂直平分线,折叠前后图形的形状和大小不变,位置变化,对应边和角相等即可以解答此题.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】我市在创建全国文明城市过程中,决定购买A,B两种树苗对某路段道路进行绿化改造,已知购买A种树苗8棵,B种树苗3棵,需要950元;若购买A种树苗5棵,B种树苗6棵,则需要800元.
(1)求购买A,B两种树苗每棵各需多少元?
(2)考虑到绿化效果和资金周转,购进A种树苗不能少于50棵,且用于购买这两种树苗的资金不能超过7650元,若购进这两种树苗共100棵,则有哪几种购买方案?
(3)某包工队承包种植任务,若种好一棵A种树苗可获工钱30元,种好一棵B种树苗可获工钱20元,在第(2)问的各种购买方案中,种好这100棵树苗,哪一种购买方案所付的种植工钱最少?最少工钱是多少元?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知数轴上三点MON对应的数分别为﹣204,点P为数轴上任意一点,其对应的数为x

1)如果点P到点MN的距离相等,则x   

2)数轴上是否存在点P,使点P到点M、点N的距离之和是10?若存在,求出x的值;若不存在,请说明理由.

3)如果点P以每分钟1个单位长度的速度从点O向左运动,同时点M和点N分别以每分钟2个单位长度和每分钟3个单位长度的速度也向左运动.设t分钟时点P到点M、点N的距离相等,求t的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在矩形ABCD中,由8个面积均为1的小正方形组成的L型模板如图放置,则矩形ABCD的周长为(
A.
B.
C.
D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,中,平分于点于点,如果,那么的长为________的长为_______.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在学习完《有理数》后,小奇对运算产生了浓厚的兴趣.借助有理数的运算,定义了一种新运算,规则如下:aba×b+2×a

1)求2⊕(﹣1)的值;

2)求﹣3⊕(﹣4)的值;

3)试用学习有理数的经验和方法来探究这种新运算是否具有交换律?请写出你的探究过程.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示,长方形ABCD阳光小区内一块空地,已知AB=(2a+6b)米,BC=(8a+4b)米.

1)该长方形ABCD的面积是多少平方米?

2)若EAB边的中点,DFBC,现打算在阴影部分种植一片草坪,这片草坪的面积是多少平方米?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】平行四边形ABCD中,BECD,BFAD,垂足分别为E、F,若CE=2,DF=1,EBF=60°,求平行四边形ABCD的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,AB=2,AC=4,将△ABC绕点C按逆时针方向旋转得到△A′B′C,使CB′∥AB,分别延长AB、CA′相交于点D,则线段BD的长为

查看答案和解析>>

同步练习册答案