精英家教网 > 初中数学 > 题目详情
2.如图,已知AE=CF,∠AFD=∠CEB,那么添加一个条件后,仍无法判定△ADF≌△CBE的是(  )
A.AD=CBB.∠A=∠CC.BE=DFD.AD∥BC

分析 根据全等三角形的判定方法依次进行判断即可.

解答 解:
∵AE=CF,
∴AF=CE,且∠AFD=∠CEB,
当AD=CB时,在△ADF和△CBE中,满足的是SSA,故A不能判定;
当∠A=∠C时,在△ADF和△CBE中,满足ASA,故B可以判定;
当BE=DF时,在△ADF和△CBE中,满足SAS,故C可以判定;
当AD∥BC时,可得∠A=∠C,同选项B,故D可以判定;
故选A.

点评 本题主要考查三角形全等的判定方法,掌握全等三角形的五种判定方法是解题的关键,即SSS、SAS、ASA、AAS和HL.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

12.在△ABC中,以AB为斜边,作直角△ABD,使点D落在△ABC内,∠ADB=90°.

(1)如图1,若AB=AC,∠BAD=30°,AD=6$\sqrt{3}$,点P、M分别为BC、AB边的中点,连接PM,求线段PM的长;
(2)如图2,若AB=AC,把△ABD绕点A逆时针旋转一定角度,得到△ACE,连接ED并延长交BC于点P,求证:BP=CP
(3)如图3,若AD=BD,过点D的直线交AC于点E,交BC于点F,EF⊥AC,且AE=EC,请直接写出线段BF、FC、AD之间的关系(不需要证明).

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

13.如图,菱形ABCD的一边中点M到对角线交点O的距离为5cm,则菱形ABCD的周长为(  )
A.5 cmB.10 cmC.20 cmD.40 cm

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

10.下列给出4个命题:
①内错角相等;
②对顶角相等;
③对于任意实数x,代数式x2-6x+10总是正数;
④若三条线段a、b、c满足a+b>c,则三条线段a、b、c一定能组成三角形.
其中正确命题的个数是(  )
A.1个B.2个C.3个D.4个

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

17.如图,△DEF是将△ABC沿射线BC的方向平移后得到的.若BC=5,EC=3,则CF的长为(  )
A.2B.3C.5D.8

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

7.点P反比例函数y=-$\frac{2\sqrt{3}}{x}$的图象上,过点P分别作坐标轴的垂线段PM、PN,则四边形OMPN的面积=(  )
A.$\sqrt{3}$B.2C.2$\sqrt{3}$D.1

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

14.如图1,在正方形ABCD中,E、F分别为DC、BC边上的点,且满足∠EAF=45°,连结EF,试说明DE+BF=EF.
解:将△ADE绕点A顺时针旋转90°得到△ABG,此时AB与AD重合.由旋转可得AB=ADMBGD,∠1=∠2,∠ABG=∠D=90°.
∴∠ABG+∠ABF=90°+90°=180°.
∴点G、B、F在同一条直线上.
∵∠EAF=45°,∴∠2+∠3=∠BAD-∠EAF=90°-45°=45°
∵∠1=∠2,∴∠1+∠3=45°.
∴∠GAF=∠EAF.
又∵AG=AE,AF=AF.
∴△GAF≌△EAF.
∵GF=EF.
∴DE+BF=BG+BF=GF=EF.
(2)类比引申:
如图2,在四边形ABCD中,AB=AD,∠BAD=90°,点E、F分别在边BC、CD上,∠EAF=45°,若∠B、∠D都不是直角,则当∠B与∠D满足等量关系∠B+∠ADC=180°时,有EF=BE+DF.
(3)联想拓展
如图3,在△ABC中,∠BAC=90°,AB=AC,点D、E均在边BC上,且∠DAE=45°,试猜想BD、DE、EC满足的等量关系,并写出推理过程.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

11. 如图OA⊥OB,若∠BOC=40°,则∠AOC的度数是(  )
A.20°B.40°C.50°D.60°

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

12.反比例函数y=$\frac{1-5m}{x}$图象上有两点A(x1,y1),B(x2,y2),若x1<0<x2,y1<y2,则m的取值范围是(  )
A.m>$\frac{1}{5}$B.m<$\frac{1}{5}$C.m≥$\frac{1}{5}$D.m≤$\frac{1}{5}$

查看答案和解析>>

同步练习册答案