精英家教网 > 初中数学 > 题目详情
如图所示,在矩形ABCD中,E为BC中点,ED交AC于点P,DQ⊥AC于点Q,AB=kBC.
(1)当k=1时,
CP
AC
=
 

(2)当k=
2
时,求证PQ=CP;
(3)当k=
 
时,
S△CEP
S△ADQ
=
1
4
精英家教网
分析:(1)利用正方形的判定得出ABCD是正方形,进而得出
CE
AD
=
CP
AP
,即可得出答案;
(2)利用已知证明出△ADQ∽△DCQ∽△ACD,进而得出QC=2AQ,以及AQ=
1
3
AC=PC;
(3)利用三角形面积比得出
CE
AD
=
PE
PD
=
CP
AP
=
1
2
,即可得出
AB
BC
=
2
2
解答:解:(1)∵在矩形ABCD中,AB=BC,
∴矩形ABCD是正方形,
∵AD∥EC,
CE
AD
=
CP
AP

∵E为BC中点,
CE
AD
=
CP
AP
=
1
2

CP
AC
=
1
3

故答案为:
1
3


(2)∵Rt△ACD中,DQ⊥AC,
∴△ADQ∽△DCQ∽△ACD,
∴AD2=AQ•AC,CD2=CQ•AC,
AQ
QC
=
AD2
CD2
=(
1
k
)2=
1
2
精英家教网
∴QC=2AQ,
AP
PC
=
AD
EC
=2,∴AP=2PC,
∴AQ=PQ=PC;

(3)
2
2

S△CEP
S△ADP
=
1
4
,当
S△CEP
S△ADQ
=
1
4
时,则点P与点Q重合.
CE
AD
=
PE
PD
=
CP
AP
=
1
2

设PE=a,PC=b,则PD=2a,PA=2b,则CD2=2a×3a=b×3b,
b=
2
a

CD
AD
=
PC
PD
=
2
a
2a
=
2
2

AB
BC
=
2
2
点评:此题主要考查了相似三角形的判定及性质和正方形的判定等知识,根据已知灵活应用相似三角形的性质是解决问题的关键
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图所示,在矩形ABCD中,AB=6,AD=2
3
,点P是边BC上的动点(点P不与点B,C重合),过点P作直线PQ∥BD,交CD边于Q点,再把△PQC沿着动直线PQ对折,点C的对应点是R点.设CP=x,△PQR与矩形ABCD重叠部分的面积为y.
(1)求∠CPQ的度数.
(2)当x取何值时,点R落在矩形ABCD的边AB上?
(3)当点R在矩形ABCD外部时,求y与x的函数关系式.并求此时函数值y的取值范围.
精英家教网精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图所示,在矩形ABCD中,AB=1,BC=2,E是CD边的中点.点P从点A开始,沿逆时针方向在矩形边上匀速运动,到点E停止.设点P经过的路程为x,△APE的面积为S,则S关于x的函数关系的大致图象是(  )
A、精英家教网B、精英家教网C、精英家教网D、精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

如图所示,在矩形ABCD中,AB=12cm,BC=5cm,点P沿AB边从点A开始向点B以2cm/s的速度移动;点Q沿DA边从点D开始向点A以1cm/s的速度移动.如果P、Q同时出发,当Q到达终点时,精英家教网P也随之停止运动.用t表示移动时间,设四边形QAPC的面积为S.
(1)试用t表示AQ、BP的长;
(2)试求出S与t的函数关系式;
(3)当t为何值时,△QAP为等腰直角三角形?并求出此时S的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图所示,在矩形ABCD中,E为BC上一动点,BE=kCE,ED交AC于点P,DQ⊥AC于Q,A精英家教网B=nBC
(1)当n=1,k=2时(如图1),
CP
PQ
=
 

(2)当n=
2
,k=1时(如图2),求证:CP=AQ;
(3)若k=1,当n=
 
时,有CP⊥DE.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图所示,在矩形ABCD中,AB=4cm,BC=8cm、点P从点D出发向点A运动,同时点Q从点B出发向点C运动,点P、Q的速度都是1cm/s.
(1)在运动过程中,经过
3
3
秒后,四边形AQCP是菱形;
(2)菱形AQCP的周长为
20
20
cm、面积为
20
20
cm2

查看答案和解析>>

同步练习册答案