精英家教网 > 初中数学 > 题目详情
如图,已知抛物线y=-
3
4
x2+
9
4
x+3与x轴交于A、B两点(A在B的左侧),与y轴交于点C.
(1)求A、B、C三点的坐标;
(2)求直线BC的函数解析式;
(3)点P是直线BC上的动点,若△POB为等腰三角形,请写出此时点P的坐标.(可直接写出结果)
(1)当y=0时,得方程0=-
3
4
x2+
9
4
x+3,
解得x=-1或x=4,
所以点A、B的坐标分别为(-1,0),(4,0)
当x=0时,y=3,
所以点C的坐标为(0,3)

(2)设直线BC的函数解析式为y=kx+b
由(1)可得
0=4k+b
3=b

解得
k=-
3
4
b=3

所以直线BC的函数解析式为:y=-
3
4
x+3

(3)P1(2,
3
2
),P2
36
5
,-
12
5
),P3
4
5
12
5
),P4(-
28
25
96
25
).
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

如图二次函数y=ax2+bx+c的图象经过A、B、C三点.
(1)观察图象,写出A、B、C三点的坐标,并求出抛物线解析式;
(2)求此抛物线的顶点坐标和对称轴;
(3)观察图象,当x取何值时,y<0,y=0,y>0.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,在平面直角坐标系中,直线y=-2x+42交x轴于点A,交直线y=x于点B,抛物线y=ax2-2x+c分别交线段AB、OB于点C、D,点C和点D的横坐标分别为16和4,点P在这条抛物线上.
(1)求点C、D的纵坐标.
(2)求a、c的值.
(3)若Q为线段OB上一点,P、Q两点的纵坐标都为5,求线段PQ的长.
(4)若Q为线段OB或线段AB上一点,PQ⊥x轴,设P、Q两点间的距离为d(d>0),点Q的横坐标为m,直接写出d随m的增大而减小时m的取值范围.[参考公式:二次函数y=ax2+bx+c(a≠0)图象的顶点坐标为(-
b
2a
4ac-b2
4a
)].

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,在直角坐标系中,点A的坐标为(-2
3
,0),⊙P刚好与x轴相切于点A,⊙P交y的正半轴于点B,点C,且BC=4.
(1)求半径PA的长;
(2)求证:四边形CAPB为菱形;
(3)有一开口向下的抛物线过O,A两点,当它的顶点不在直线AB的上方时,求函数表达式的二次项系数a的取值范围.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

抛物线的顶点为(3,3),且点(2,-2)在抛物线上,求抛物线的解析式.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图所示,已知在直角梯形OABC中,ABOC,BC⊥x轴于点C,A(1,1)、B(3,1).动点P从O点出发,沿x轴正方向以每秒1个单位长度的速度移动.过P点作PQ垂直于直线OA,垂足为Q.设P点移动的时间为t秒(0<t<4),△OPQ与直角梯形OABC重叠部分的面积为S.
(1)求经过O、A、B三点的抛物线解析式;
(2)求S与t的函数关系式;
(3)在运动过程中,是否存在某一时刻t,使得以C、P、Q为顶点的三角形与△OAB相似?若存在,求出t的值;若不存在,请说明理由.
(4)将△OPQ绕着点P顺时针旋转90°,是否存在t,使得△OPQ的顶点O或Q在抛物线上?若存在,直接写出t的值;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知二次函数y=
1
2
x2+bx+c的图象经过点A(-3,6),并且与x轴交于点B(-1,0)和点C,顶点为P.
(1)求这个二次函数解析式;
(2)设D为线段OC上的点,满足∠DPC=∠BAC,求点D的坐标.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,在平面直角坐标系中,直线y=-
1
2
x+b(b>0)
分别交x轴,y轴于A,B两点,以OA,OB为边作矩形OACB,D为BC的中点.以M(4,0),N(8,0)为斜边端点作等腰直角三角形PMN,点P在第一象限,设矩形OACB与△PMN重叠部分的面积为S.
(1)求点P的坐标.
(2)若点P关于x轴的对称点为P′,试求经过M、N、P′三点的抛物线的解析式.
(3)当b值由小到大变化时,求S与b的函数关系式.
(4)若在直线y=-
1
2
x+b(b>0)
上存在点Q,使∠OQM等于90°,请直接写出b的取值范围.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,顶点为D的抛物线y=x2+bx-3与x轴相交于A,B两点,与y轴相交于点C,连接BC,已知△BOC是等腰三角形.
(1)求点B的坐标及抛物线y=x2+bx-3的解析式;
(2)求四边形ACDB的面积;
(3)若点E(x,y)是y轴右侧的抛物线上不同于点B的任意一点,设以A,B,C,E为顶点的四边形的面积为S.
①求S与x之间的函数关系式.
②若以A,B,C,E为顶点的四边形与四边形ACDB的面积相等,求点E的坐标.

查看答案和解析>>

同步练习册答案