精英家教网 > 初中数学 > 题目详情
依次连接菱形各边中点所得到的四边形是          
矩形
如右图所示,四边形ABCD是菱形,顺次连接个边中点E、F、G、H,连接AC、BD,
∵E、H是AB、AD中点,
∴EH∥BD,
同理有FG∥BD,
∴EH∥FG,
同理EF∥HG,
∴四边形EFGH是平行四边形,
∵四边形ABCD是菱形,
∴AC⊥BD,
∴∠AOB=90°,
又∵EF∥AC,
∴∠BME=90,
∵EH∥BD,
∴∠HEF=∠BME=90°,
∴四边形EFGH是矩形.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

如图,已知E是平行四边形ABCD的边AB上的点,连接DE.
(1)在∠ABC的内部,作射线BM交线段CD于点F,使∠CBF=∠ADE;(要求:用尺规作图,保留作图痕迹,不写作法和证明)
(2)在(1)的条件下,求证:△ADE≌△CBF.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

(1) 填空:如图1,在正方形PQRS中,已知点M、N分别在边QR、RS上,且QM=RN,连结PN、SM相交于点O,则∠POM=_____度 .

(2) 如图2,在等腰梯形ABCD中,已知AB∥CD,BC=CD,∠ABC=60°. 以此为部分条件,构造一个与上述命题类似的正确命题并加以证明.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

邻边不相等的平行四边形纸片,剪去一个菱形,余下一个四边形,称为第一次操作;在余下的四边形纸片中再剪去一个菱形,又余下一个四边形,称为第二次操作;……依次类推,若第n次操作余下的四边形是菱形,则称原平行四边形为n阶准菱形,如图1,平行四边形中,若,则平行四边形为1阶准菱形。

(1)判断与推理:
① 邻边长分别为2和3的平行四边形是__________阶准菱形;
② 小明为了剪去一个菱形,进行如下操作:如图2,把平行四边形沿着折叠(点上)使点落在边上的点,得到四边形,请证明四边形是菱形。
(2)操作、探究与计算:
① 已知平行四边形的邻边分别为1,裁剪线的示意图,并在图形下方写出的值;
② 已知平行四边形的邻边长分别为,满足,请写出平行四边形是几阶准菱形。

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

正方形、正方形和正方形的位置如图所示,点在线段上,已知
正方形的边长为3,则的面积为         

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,等腰梯形ABCD中,AD∥BC,AD=5cm,BC=11cm,高DE=4cm,该梯形的中位线长是        cm;梯形的周长是          cm.(每格1分)

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

在四边形中,对角线AC与BD交于点O,△ABO≌△CDO.
(1)求证:四边形为平行四边形;
(2)若∠ABO=∠DCO,求证:四边形为矩形.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,在直角坐标系中,点的坐标为,点在直线上运动,点分别为的中点,其中是大于零的常数.
(1)请判断四边形的形状,并证明你的结论;
(2)试求四边形的面积的关系式;
(3)设直线轴交于点,问:四边形能不能是矩形?若能,求出的值;若不能,说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

下列说法中错误的是
A.矩形的对角线互相平分且相等B.对角线互相垂直的四边形是菱形
C.等腰梯形的两条对角线相等D.等腰三角形底边的中点到两腰的距离相等

查看答案和解析>>

同步练习册答案