精英家教网 > 初中数学 > 题目详情
如图,已知抛物线过点A(-1,0)、B(3,0)、C(0,-3).
(1)求该抛物线的解析式及其顶点的坐标;
(2)若P是抛物线上C、B两点之间的一动点,请连接CP、BP,是否存在点P,使得四边形OBPC的面积最大?若存在,求出点P的坐标;若不存在,请说明理由.
分析:(1)设出二次函数的一般形式后代入三个点的坐标求解即可;
(2)设存在点P(x,x2-2x-3),使得四边形OBPC的面积最大,作PD⊥x轴于点D,根据S四边形OCPB=S梯形OCPD+S△PBD得到有关x的最大值后即可求解
解答:解:(1)设抛物线的解析式为y=ax2+bx+c,
∵过点A(-1,0)、B(3,0)、C(0,-3),
a-b+c=0
9a+3b+c=0
c=-3

解得:
a=1
b=-2
c=-3

∴抛物线的解析式为:y=x2-2x-3
∵y=x2-2x-3=(x-1)2-4,
∴顶点坐标为(1,-4);

(2)设存在点P(x,x2-2x-3),使得四边形OBPC的面积最大,
如图,作PD⊥x轴于点D,
则OD=x,PD=-(x2-2x-3)=3+2x-x2,DB=3-x,
S四边形OCPB=S梯形OCPD+S△PBD=
1
2
(OC+PD)•OD+
1
2
DB•DP=
1
2
×(3+3+2x-x2)•x+
1
2
(3-x)(3+2x-x2)=-
3
2
(x-
3
2
2+
63
8

则当x=
3
2
时,面积最大,
此时点P的坐标为:(
3
2
,-
15
4
).
点评:本题着重考查了待定系数法求二次函数解析式、四边形的面积等知识点,综合性强,考查学生数形结合的数学思想方法.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,已知抛物线过点A(-1,0)、B(4,0)、C(
11
5
,-
12
5
)

(1)求抛物线对应的函数关系式及对称轴;
(2)点C′是点C关于抛物线对称轴的对称点,证明直线y=-
4
3
(x+1)
必经过点C′.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,已知抛物线过点A(0,6),B(2,0),C(7,
52
).
(1)求抛物线的解析式;
(2)若D是抛物线的顶点,E是抛物线的对称轴与直线AC的交点,F与E关于D对称,求证:∠CFE=∠AFE;
(3)在y轴上是否存在这样的点P,使△AFP与△FDC相似?若有请求出所有符和条件的点P的坐标;若没有,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知抛物线过点A(0,6),B(2,0),C(6,0),直线AB交抛物线的对称轴于点F,直线AC交抛物线对称轴于点E.
(1)求抛物线的解析式;
(2)求证:点E与点F关于顶点D对称;
(3)在y轴上是否存在这样的点P,使△AFP与△FDC相似?若有,请求出所有合条件的点P的坐标;若没有,请说明理由.

查看答案和解析>>

科目:初中数学 来源:2011-2012学年山东省济南市天桥区九年级中考三模数学试卷(解析版) 题型:解答题

如图,已知抛物线过点A(0,6),B(2,0),C(7,). 若D是抛物线的顶点,E是抛物线的对称轴与直线AC的交点,F与E关于D对称.

(1)求抛物线的解析式;

(2)求证:∠CFE=∠AFE;

(3)在y轴上是否存在这样的点P,使△AFP与△FDC相似,若有,请求出所有合条件的点P的坐标;若没有,请说明理由.

 

 

 

查看答案和解析>>

同步练习册答案