精英家教网 > 初中数学 > 题目详情
20.若5<a<8,化简$\sqrt{(a-5)^{2}}$-$\sqrt{{a}^{2}-16a+64}$.

分析 直接利用a的取值范围结合完全平方公式以及二次根式的性质化简求出答案.

解答 解:∵5<a<8,
∴$\sqrt{(a-5)^{2}}$-$\sqrt{{a}^{2}-16a+64}$
=a-5-$\sqrt{(a-8)^{2}}$
=a-5-(8-a)
=-13.

点评 此题主要考查了二次根式的性质与化简,正确掌握二次根式的性质是解题关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:选择题

10.在实数$\sqrt{5}$、-3、0、$\root{3}{-1}$、3.1415、π、$\sqrt{144}$、$\root{3}{6}$、2.123122312223…(1和3之间的2逐次加1个)中,无理数的个数为(  )
A.2个B.3个C.4个D.5个

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

11.计算:$\frac{1}{2}+(-2\frac{3}{7})-(-1.5)-\frac{3}{7}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

8.如图,在△ABC中,∠C=90°,AC=8,BC=6,点P、M分别位于边AC、BC上(不与原点重合),PQ⊥AB,垂足为Q,四边形PMQN为平行四边形
(1)设CP=x,BQ=y,求y关于x的函数关系式,并写出定义域;
(2)当点N与点A重合时,求CM的长;
(3)试问:平行四边形PMQN是否可能为正方形?若能,请求出其边长,若不能,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

15.如图,CE是△ABC的外角∠ACD的平分线,若∠A=85°,∠ACE=60°,则∠B=(  )
A.35°B.95°C.85°D.75°

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

5.如图,已知抛物线y=$\frac{1}{2}$x2-x-4与x轴交于B,C,与y轴交于A,点P是抛物线上一点,且∠ACP+∠OAB=∠ACB,求点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

12.计算:$\frac{2}{3}$$\sqrt{9x}$-6$\sqrt{\frac{x}{4}}$-2x$\sqrt{\frac{1}{x}}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

9.(1)计算:$\frac{a-1}{{a}^{2}-4a+4}$$÷\frac{{a}^{2}-1}{{a}^{2}-4}$.
(2)先化简再求值:$\frac{a-1}{a-2}$÷$\frac{{a}^{2}-2a+1}{2a-4}$,其中a=-1.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

10.先化简分式$\frac{{a}^{2}-9}{{a}^{2}+6a+9}$÷$\frac{a-3}{{a}^{2}+3a}$+$\frac{a-{a}^{2}}{{a}^{2}-1}$-$\frac{1}{a+1}$,然后在0,1,2,3中选一个你认为合适的a值,代入求值.

查看答案和解析>>

同步练习册答案