精英家教网 > 初中数学 > 题目详情
32、如图,在△ABD和△ACE中,有下列四个论断:①AB=AC;②AD=AE;③∠1=∠2;④BD=CE.请你以其中三个作为条件,余下的一个作为结论,编一道数学题,并写出解答过程.(要求写出已知,求证及证明过程)
分析:根据三角形全等的判定方法进行组合、证明,答案不唯一.
解答:解:答案不唯一.如:
已知:在△ABD和△ACE中,AB=AC,AD=AE,∠1=∠2.
求证:BD=CE.(2分)
证明:∵∠1=∠2,∴∠BAD=∠CAE.(3分)
在△ABD和△ACE中,
∵AB=AC,∠BAD=∠CAE,AD=AE,
∴△ABD≌△ACE.(SAS)         (5分)
∴BD=CE.(全等三角形对应边相等) (6分)
点评:此题考查全等三角形的判定和性质,熟练掌握判定方法是关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

24、如图,在△ABD和△ACE中,有下列四个等式:①AB=AC;②AD=AE;③∠1=∠2;④BD=CE.以其中三个条件为题设,填入已知栏中,一个论断为结论,填入下面求证栏中,使之组成一个真命题,并写出证明过程.
已知:
在△ABD和△ACE中,AB=AC,AD=AE,BD=CE

求证:
∠1=∠2

证明:

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在△ABD和△ACE中,AB=AD,AC=AE,∠BAD=∠CAE,连接BC、DE相交于点F,BC与AD相交于点G.求证:BC=DE.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在△ABD和△BAC中,∠1=∠2,∠C=∠D,AC、BD相交于点E,则下列结论中正确的个数有(  )
①∠DAE=∠CBE;②△ADE≌△BCE;③CE=DE;④△EAB为等腰三角形.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在△ABD和△ACE中,AB=AD,AC=AE,∠BAD=∠CAE,连接BC、DE相交于点F,BC与AD相交于点G.
(1)试说明:△ABC≌△ADE.
(2)如果线段FD是线段FG和FB的比例中项,那么BC平分∠ABD吗?为什么?

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在△ABD和△ACE中,有下列四个等式:
①AB=AC  ②AD=AE  ③∠1=∠2  ④BD=CE.
请你从中选三个作为题设,余下的一个作为结论,写出一个正确的命题,并加以说理.
题设:
AB=AC,AD=AE,BD=CE
AB=AC,AD=AE,BD=CE
,结论:
∠1=∠2
∠1=∠2
.(不能只填序号)理由如下:

查看答案和解析>>

同步练习册答案