【题目】若将一个自然数各位上的数字按照从高位数字到低位数字排成一列后,后一个人数减去前一个数的差是一个常数,则这个数叫做“幸福数”.如:四位数2468排成一列后为:2,4,6,8.因为8-6=6-4=4-2=2,且差为2的常数,故2468是一个差为2的四位“幸福数”.又如,9876,6666等也是“幸福数”.
若一个自然数从左到右各数位上的数字和另一个自然数从右到左各数位上的数字完全相同,则称这两个数为“三生三世数”.例如:3579与9753,8765与5678,...,都是“三生三世数”.
规定:把高位数字为x,差为2的三位“幸福数”与它的“三生三世数”的和与222的商记为F(x).例如当x=5时,三位“幸福数”为579,它的“三生三世数”为975,三位“幸福数”与它的“三生三世数”的和为:579+975=1554,1554÷222=7,所以F(x)=7.
(1)计算:F(1), F(4);
(2)已知F(x) =4,求x的值.
【答案】(1)F(1) =3,F(4) =6;(2) x=2.
【解析】试题分析:(1)根据题意可得“幸福数”与“三生三世数”,然后按所规定的运算顺序进行计算即可得;
(2)设三位数的最高位为x,根据定义表示出“幸福数”与“三生三世数”,然后按规定的运算顺序列出方程,解方程即可得.
试题解析:(1)由题可知,
当x=1时,“幸福数”:135;“三生三世数”:531
F(1)=(135+531)÷222=3;
同理可得,当x=4时,“幸福数”:468;“三生三世数”:864
F(4)=(468+864)÷222=6;
(2)设三位数的最高位为x,则
“幸福数”:100x+10(x+2)+(x+4);“三生三世数”:100(x+4)+10(x+2)+x
又 F(x) =4,
{[100x+10(x+2)+(x+4)]+[100(x+4)+10(x+2)+x]}÷222=4,
解得,x=2.
科目:初中数学 来源: 题型:
【题目】今年,我国政府为减轻农民负担,决定在 5 年内免去农业税.某乡今年人均上缴农业税 25 元,若两年后人均上缴农业税为 16 元,假设这两年降低的百分率相同
(1)求降低的百分率;
(2)小红所在的乡约有 16000 农民,问该乡农民明年减少多少农业税?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在中, , 于点,把线段沿着 的方向平移得到线段,连接.
问:(1)四边形是_________形;
(2)若的周长比的周长大6,求四边形的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】攀枝花芒果由于品质高、口感好而闻名全国,通过优质快捷的网络销售渠道,小明的妈妈先购买了2箱A品种芒果和3箱B品种芒果,共花费450元;后又购买了l箱A品种芒果和2箱B品种芒果,共花费275元(每次两种芒果的售价都不变).
(1)问A品种芒果和B品种芒果的售价分别是每箱多少元?
(2)现要购买两种芒果共18箱,要求B品种芒果的数量不少于A品种芒果数量的2倍,但不超过A品种芒果数量的4倍,请你设计购买方案,并写出所需费用最低的购买方案.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知y是x的一次函数,且当x=﹣4时,y=9;当x=6时,y=﹣1.
(1)求这个一次函数的解析式;
(2)当x=﹣ 时,函数y的值;
(3)当y<1时,自变量x取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com