【题目】如图,AB是⊙O的直径,点P为AB延长线上一点,PC切⊙O于点C,过点B作BE∥PC交⊙O于点E,连接CE,CB.
(1)试判断△BCE的形状,并说明理由;
(2)过点C作CD⊥AB于点D交BE于点F,若cosP=,CF=5,求AB的长.
【答案】(1)△BCE为等腰三角形,理由见解析;(2)AB=20
【解析】
(1)连接OC,根据切线的性质得到∠OCP=90°,根据平行线的性质得到OC⊥BE,根据等腰三角形的性质即可得到结论;
(2)连接AC,根据圆周角定理得到∠ACB=90°,求得∠A=∠DCB,得到∠FCB=∠CBF,根据等腰三角形的性质得到CF=BF=5,根据勾股定理得到BC=,由射影定理即可得到结论.
(1)△BCE为等腰三角形,
理由:连接OC,
∵PC切⊙O于点C,
∴∠OCP=90°,
∵BE∥PC,
∴OC⊥BE,
∴
∴∠CBE=∠E,
∴EC=BC,
即△BCE是等腰三角形;
(2)连接AC,
∵AB是⊙O的直径,
∴∠ACB=90°,
∵CD⊥AB,
∴∠CDB=90°,
∴∠ACD+∠BCD=∠A+∠ACD=90°,
∴∠A=∠DCB,
∵∠E=∠A,
∴∠FCB=∠CBF,
∴CF=BF=5,
∵BE∥PC,
∴∠DBF=∠P,
∴cosP=cos∠DBF=,
∴BD=4,DF=3,CD=8,
∴BC=,
∵∠ACB=90°,CD⊥AB,
∴BC2=ABBD,
∴(4)2=4AB,
∴AB=20.
科目:初中数学 来源: 题型:
【题目】已知在平面直角坐标系中,点,以线段为直径作圆,圆心为,直线交于点,连接.
(1)求证:直线是的切线;
(2)点为轴上任意一动点,连接交于点,连接:
①当时,求所有点的坐标 (直接写出);
②求的最大值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在矩形ABCD中(AD>AB),点E是BC上一点,且DE=DA,AF⊥DE,垂足为点F,在下列结论中,不一定正确的是( )
A. △AFD≌△DCE B. AF=AD C. AB=AF D. BE=AD﹣DF
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,直线,直线分别与、相交于点、.小亮同学利用尺规按以下步骤作图:①以点为圆心,以任意长为半径作弧交于点,交于点;②分别以、为圆心,以大于长为半径作弧,两弧在内交于点;③做射线交于点.若,,则的内切圆半径长等于__________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,AB为⊙O直径,CD为弦,AB⊥CD于E,连接CO,AD,∠BAD=20°,下列结论中正确的有( )①CE=OE②∠C=50° ③=④AD=2OE
A.①④B.②③C.②③④D.①②③④
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为更精准地关爱留守学生,某学校将留守学生的各种情形分成四种类型:A.由父母一方照看;B.由爷爷奶奶照看;C.由叔姨等近亲照看;D.直接寄宿学校.某数学小组随机调查了一个班级,发现该班留守学生数量占全班总人数的20%,并将调查结果制成如下两幅不完整的统计图.
(1)该班共有 名留守学生,B类型留守学生所在扇形的圆心角的度数为 ;
(2)将条形统计图补充完整;
(3)已知该校共有2400名学生,现学校打算对D类型的留守学生进行手拉手关爱活动,请你估计该校将有多少名留守学生在此关爱活动中受益?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,抛物线与直线相交于,两点,且抛物线经过点
(1)求抛物线的解析式.
(2)点是抛物线上的一个动点(不与点点重合),过点作直线轴于点,交直线于点.当时,求点坐标;
(3)如图所示,设抛物线与轴交于点,在抛物线的第一象限内,是否存在一点,使得四边形的面积最大?若存在,请求出点的坐标;若不存在,说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知x2﹣8x+16﹣m2=0(m≠0)是关于x的一元二次方程
(1)证明:此方程总有两个不相等的实数根;
(2)若等腰△ABC的一边长a=6,另两边长b、c是该方程的两个实数根,求△ABC的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在矩形ABCD中,AB=6,BC=4,动点Q在边AB上,连接CQ,将△BQC沿CQ所在的直线对折得到△CQN,延长QN交直线CD于点M.
(1)求证:MC=MQ
(2)当BQ=1时,求DM的长;
(3)过点D作DE⊥CQ,垂足为点E,直线QN与直线DE交于点F,且,求BQ的长.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com