精英家教网 > 初中数学 > 题目详情
如图,EF与MN将正方形ABCD恰好分成两个矩形和两小正方形,如果AB=1,则正方形AMPE与正方形PFCN的周长和为______.
解;∵四边形AMPE与四边形PFCN是正方形,
∴AE=EP=PM=AM,PN=NC=BC=BM.
∴正方形AMPE与正方形PFCN的周长为4AE+4PN.
∵四边形MBFP和四边形PNDE是矩形,
∴ED=PN,MB=PF,
∴正方形AMPE与正方形PFCN的周长为4AE+4ED.
∴正方形AMPE与正方形PFCN的周长为4(AE+ED)=4AD.
∵AD=1,
∴正方形AMPE与正方形PFCN的周长为:4.
故答案为:4
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:单选题

如图,在一个由4×4个小正方形组成的正方形网格中,阴影部分面积与正方形ABCD的面积比是(  )
A.5:8B.3:4C.9:16D.1:2

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,在边长为2的正方形ABCD中,E是AB延长线上一点,且BE=BD,F是CE的中点,则△BDF的面积是(  )
A.
2
+1
B.2
2
+1
C.2
2
+2
D.
6

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,在正方形ABCD中,两条对角线相交于点O,∠BCA的平分线交BD于E,若正方形ABCD的周长是12cm,则DE=______cm.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,已知正方形ABCD,点E在BC边上,将△DCE绕某点G旋转得到△CBF,点F恰好在AB边上.
(1)请画出旋转中心G(保留画图痕迹),并连接GF,GE;
(2)若正方形的边长为2a,当CE=______时,S△FGE=S△FBE;当CE=______时,S△FGE=3S△FBE

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,正方形ABCD的边长为2,点E是BC边的中点,过点B作BG⊥AE,垂足为G,延长BG交AC于点F,则CF=______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,在正方形ABCD中,E是正方形内一点,F是正方形外一点,且∠EDC=∠FBC,EC⊥CF.
(1)求证:EC=FC;
(2)当BE:CE=1:2,∠BEC=135°时,求tan∠FBE的值.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,在正方形ABCD中,E、F分别是边CD、AD上的点,且CE=DF.AE与BF相交于点O,则下列结论错误的是(  )
A.AE=BFB.AE⊥BF
C.AO=OED.S△AOB=S四边形DEOF

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,已知正方形ABCD的边长是2,E是AB的中点,延长BC到点F使CF=AE.
(1)若把△ADE绕点D旋转一定的角度时,能否与△CDF重合?请说明理由.
(2)现把△DCF向左平移,使DC与AB重合,得△ABH,AH交ED于点G.求证:AH⊥ED,并求AG的长.

查看答案和解析>>

同步练习册答案