¾«Ó¢¼Ò½ÌÍøÒÑÖª£º½«º¯Êýy=
3
3
x
µÄͼÏóÏòÉÏƽÒÆ2¸öµ¥Î»£¬µÃµ½Ò»¸öеĺ¯ÊýͼÏó£®
£¨1£©Ð´³öÕâ¸öеĺ¯ÊýµÄ½âÎöʽ£»
£¨2£©ÈôƽÒÆÇ°ºóµÄÕâÁ½¸öº¯ÊýͼÏó·Ö±ðÓëyÖá½»ÓÚO£¬AÁ½µã£¬ÓëÖ±Ïßx=-
3
½»ÓÚC£¬BÁ½µã£®ÊÔÅжÏÒÔA£¬B£¬C£¬OËĵãΪ¶¥µãËıßÐÎÐÎ×´£¬²¢ËµÃ÷ÀíÓÉ£»
£¨3£©Èô£¨2£©ÖеÄËıßÐΣ¨²»°üÀ¨±ß½ç£©Ê¼ÖÕ¸²¸Ç×Ŷþ´Îº¯Êýy=x2-2bx+b2+
1
2
µÄͼÏóÒ»²¿·Ö£¬ÇóÂú×ãÌõ¼þµÄʵÊýbµÄÈ¡Öµ·¶Î§£®
·ÖÎö£º£¨1£©¸ù¾Ý¡°ÉϼÓϼõ¡±µÄƽÒƹæÂɼ´¿ÉÇóµÃƽÒƺóµÄÖ±Ïß½âÎöʽ£®
£¨2£©¸ù¾Ý£¨1£©ÌâËùµÃÖ±Ïß½âÎöʽ£¬¿ÉÇóµÃAµã×ø±ê£»Ò×ÇóµÃB¡¢CµÄ×ø±ê£¬ÓÉÓÚËıßÐÎOABCµÄ¶Ô±ß¶¼Æ½ÐУ¬Òò´ËËıßÐÎOABCÊ×ÏÈÊǸöƽÐÐËıßÐΣ¬¸ù¾ÝA¡¢BµÄ×ø±ê¿ÉÇóµÃAB=2=OA£¬ÓÉ´Ë¿ÉÖ¤µÃËıßÐÎOABCÊÇÁâÐΣ®
£¨3£©½«Ëù¸øµÄÅ×ÎïÏß½âÎöʽ»¯Îª¶¥µãʽ£¬¿ÉµÃ£ºy=£¨x-b£©2+
1
2
£¬ÓÉÓÚbÖµ²»È·¶¨£¬Òò´Ë¸Ãº¯ÊýµÄ¶¥µãÔÚÖ±Ïßy=
1
2
ÉÏ×óÓÒÒƶ¯£»ÇóËıßÐθ²¸Ç¶þ´Îº¯ÊýʱbµÄÈ¡Öµ·¶Î§£¬¿É¿¼ÂÇÁ½ÖÖÇé¿ö£º
¢Ùµ±Å×ÎïÏ߶ԳÆÖáÓÒ²àͼÏó¾­¹ýµãBʱ£¬bµÄÖµ£»
¢Úµ±Å×ÎïÏ߶ԳÆÖá×ó²àͼÏó¾­¹ýµãAʱ£¬bµÄÖµ£»
ÁªÁ¢ÉÏÊöÁ½ÖÖÇé¿öÏÂbµÄÈ¡Öµ¼´¿ÉÇóµÃʵÊýbµÄÈ¡Öµ·¶Î§£®
½â´ð£º½â£º£¨1£©y=
3
3
x+2£®

£¨2£©ËıßÐÎAOCBΪÁâÐΣ»ÀíÓÉÈçÏ£º
ÓÉÌâÒâ¿ÉµÃ£ºAB¡ÎCO£¬BC¡ÎAO£¬AO=2£¬
¡àËıßÐÎAOCBΪƽÐÐËıßÐΣ¬Ò×µÃA£¨0£¬2£©£¬B£¨-
3
£¬1£©£»
Óɹ´¹É¶¨Àí¿ÉµÃ£ºAB=2£¬
¡àAB=AO£¬¹ÊƽÐÐËıßÐÎAOCBÊÇÁâÐΣ®
¾«Ó¢¼Ò½ÌÍø

£¨3£©¶þ´Îº¯Êýy=x2-2bx+b2+
1
2
»¯Îª¶¥µãʽΪ£ºy=£¨x-b£©2+
1
2
£¬
¡àÅ×ÎïÏ߶¥µãÔÚÖ±Ïßy=
1
2
ÉÏÒƶ¯£»
¼ÙÉèËıßÐεı߽ç¿ÉÒÔ¸²¸Çµ½¶þ´Îº¯Êý£¬ÔòBµãºÍAµã·Ö±ðÊǶþ´Îº¯ÊýÓëËıßÐνӴ¥µÄ±ß½çµã£»
½«B£¨-
3
£¬1£©´úÈë¶þ´Îº¯Êý£¬
½âµÃb=-
3
-
2
2
£¬b=-
3
+
2
2
£¨²»ºÏÌâÒ⣬ÉáÈ¥£©£»
½«A£¨0£¬2£©´úÈë¶þ´Îº¯Êý£¬
½âµÃb=
6
2
£¬b=-
6
2
£¨²»ºÏÌâÒ⣬ÉáÈ¥£©£»
ËùÒÔʵÊýbµÄÈ¡Öµ·¶Î§£º-
3
-
2
2
£¼b£¼
6
2
£®
µãÆÀ£º´ËÌâÖ÷Òª¿¼²éÁ˺¯ÊýͼÏóµÄƽÒÆ¡¢Æ½ÐÐËıßÐμ°ÁâÐεÄÅж¨¡¢º¯ÊýͼÏóÉϵãµÄ×ø±êÒâÒåµÈ֪ʶ£¬£¨3£©ÌâÖУ¬Äܹ»ÕýÈ·µÄÅжϳöÅ×ÎïÏßµÄÒƶ¯·¶Î§Êǽâ¾öÎÊÌâµÄ¹Ø¼ü£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖª£ºµÈÑüÈý½ÇÐÎOABÔÚÖ±½Ç×ø±êϵÖеÄλÖÃÈçͼ£¬µãAµÄ×ø±êΪ£¨-3
3
£¬3
£©£¬µãBµÄ×ø±ê¾«Ó¢¼Ò½ÌÍøΪ£¨-6£¬0£©£®
£¨1£©ÈôÈý½ÇÐÎOAB¹ØÓÚyÖáµÄÖá¶Ô³ÆͼÐÎÊÇÈý½ÇÐÎOA¡äB¡ä£¬ÇëÖ±½Óд³öA¡¢BµÄ¶Ô³ÆµãA¡ä¡¢B¡äµÄ×ø±ê£»
£¨2£©Èô½«Èý½ÇÐÎOABÑØxÖáÏòÓÒƽÒÆa¸öµ¥Î»£¬´ËʱµãAÇ¡ºÃÂäÔÚ·´±ÈÀýº¯Êýy=
6
3
x
µÄͼÏóÉÏ£¬ÇóaµÄÖµ£»
£¨3£©ÈôÈý½ÇÐÎOABÈƵãO°´ÄæʱÕë·½ÏòÐýת¦Á¶È£¨0£¼¦Á£¼90£©£®
¢Ùµ±¦Á=30¡ãʱµãBÇ¡ºÃÂäÔÚ·´±ÈÀýº¯Êýy=
k
x
µÄͼÏóÉÏ£¬ÇókµÄÖµ£»
¢ÚÎʵãA¡¢BÄÜ·ñͬʱÂäÔÚ¢ÙÖеķ´±ÈÀýº¯ÊýµÄͼÏóÉÏ£¬ÈôÄÜ£¬Çó³ö¦ÁµÄÖµ£»Èô²»ÄÜ£¬Çë˵Ã÷ÀíÓÉ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖª£ºµÈÑüÈý½ÇÐÎOABÔÚÖ±½Ç×ø±êϵÖеÄλÖÃÈçͼ£¬µãAµÄ×ø±êΪ£¨-3
3
£¬3
£©£¬µãBµÄ×ø±êΪ£¨-6£¬0£©£®
£¨1£©Èô¡÷OAB¹ØÓÚyÖáµÄÖá¶Ô³ÆͼÐÎÊÇÈý½ÇÐÎOA¡äB¡ä£¬ÇëÖ±½Óд³öA¡¢BµÄ¶Ô³ÆµãA¡ä¡¢B¡äµÄ×ø±ê£»
£¨2£©Èô½«¡÷OABÑØxÖáÏòÓÒƽÒÆa¸öµ¥Î»£¬´ËʱµãAÇ¡ºÃÂäÔÚ·´±ÈÀýº¯Êýy=
6
3
x
µÄͼÏóÉÏ£¬ÇóaµÄÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨2012•ºÍƽÇø¶þÄ££©ÒÑÖªÅ×ÎïÏßy1=a£¨x-2£©2-4£¨a¡Ù0£©¾­¹ýµã£¨0£¬-3£©£¬¶¥µãΪM£¬½«Å×ÎïÏßy1ÏòÉÏƽÒÆb¸öµ¥Î»¿ÉʹƽÒƺóµÃµ½µÄÅ×ÎïÏßy2¾­¹ý×ø±êÔ­µã£¬Å×ÎïÏßy2µÄ¶¥µãΪA£¬ÓëxÖáµÄÁíÒ»¸ö½»µãΪB£®

£¨1£©ÇóaµÄÖµ£»
£¨2£©¢Ùb=
3
3
£¬¢ÚÅ×ÎïÏßy2µÄº¯Êý±í´ïʽÊÇ
y2=
1
4
£¨x-2£©2-1
y2=
1
4
£¨x-2£©2-1
£»
£¨3£©¢ÙµãPÊÇyÖáÉÏÒ»µã£¬µ±|PA-PB|µÄÖµ×î´óʱ£¬ÇóµãPµÄ×ø±ê£»
¢ÚµãEÊÇxÖáÉÏÒ»µã£¬ÔÚÅ×ÎïÏßy2ÉÏÊÇ·ñ´æÔÚµãF£¬Ê¹O£¨Ô­µã£©¡¢M¡¢E¡¢FËĵ㹹³ÉÒÔOMΪһ±ßµÄƽÐÐËıßÐΣ¿Èô´æÔÚ£¬ÇëÇó³öµãFµÄ×ø±ê£»Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖª¶þ´Îº¯Êýy=ax2+bx+cµÄͼÏóµÄ¶¥µãλÓÚxÖáÏ·½£¬Ëüµ½xÖáµÄ¾àÀëΪ4£¬Ï±íÊÇxÓëyµÄ¶ÔÓ¦Öµ±í£º
x
-1
-1
0
1
1
2
3
3
y 0 -3 -4 -3 0
£¨1£©Çó³ö¶þ´Îº¯ÊýµÄ½âÎöʽ£»
£¨2£©½«±íÖеĿհ״¦ÌîдÍêÕû£»
£¨3£©ÔÚÓұߵÄ×ø±êϵÖл­³öy=ax2+bx+cµÄͼÏó£»
£¨4£©¸ù¾ÝͼÏó»Ø´ð£ºµ±xΪºÎֵʱ£¬º¯Êýy=ax2+bx+cµÄÖµ´óÓÚ0£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖª£ºµÈÑüÈý½ÇÐÎOABÔÚÖ±½Ç×ø±êϵÖеÄλÖÃÈçͼ£¬µãAµÄ×ø±êΪ£¨-3
3
£¬3
£©£¬µãBµÄ×ø±êΪ£¨-6£¬0£©£®
£¨1£©ÈôÈý½ÇÐÎOAB¹ØÓÚyÖáµÄÖá¶Ô³ÆͼÐÎÊÇÈý½ÇÐÎOA'B'£¬ÇëÖ±½Óд³öA¡¢BµÄ¶Ô³ÆµãA'¡¢B'µÄ×ø±ê£»
£¨2£©Èô½«Èý½ÇÐÎOABÑØxÖáÏòÓÒƽÒÆa¸öµ¥Î»£¬´ËʱµãAÇ¡ºÃÂäÔÚ·´±ÈÀýº¯Êýy=
6
3
x
µÄͼÏóÉÏ£¬ÇóaµÄÖµ£»
£¨3£©ÈôÈý½ÇÐÎOABÈƵãO°´ÄæʱÕë·½ÏòÐýת30¡ãʱµãBÇ¡ºÃÂäÔÚ·´±ÈÀýº¯Êýy=
k
x
µÄͼÏóÉÏ£¬ÇókµÄÖµ£®
£¨4£©Èô½«Èý½ÇÐÎOABÑØxÖáÏòÓÒƽÒÆb¸öµ¥Î»ºóµÄAµã£¬Ó뽫ÔÚÈý½ÇÐÎOABÈƵãO°´ÄæʱÕë·½ÏòÐýת45¶ÈºóµÄBµãÇ¡ºÃ¶¼ÔÚy=
m
x
ÉÏ£¬ÇómºÍb£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸