分析 本题需先分别求出S△ABD,S△ABE再根据S△ADF-S△BEF=S△ABD-S△ABE即可求出结果.
解答 解:∵点D是AC的中点,
∴AD=$\frac{1}{2}$AC,
∵S△ABC=12,
∴S△ABD=$\frac{1}{2}$S△ABC=$\frac{1}{2}$×12=6.
∵EC=2BE,S△ABC=12,
∴S△ABE=$\frac{1}{3}$S△ABC=$\frac{1}{3}$×12=4,
∵S△ABD-S△ABE=(S△ADF+S△ABF)-(S△ABF+S△BEF)=S△ADF-S△BEF,
即S△ADF-S△BEF=S△ABD-S△ABE=6-4=2.
故答案为:2.
点评 本题考查三角形的面积,关键知道当高相等时,面积等于底边的比,根据此可求出三角形的面积,然后求出差.
科目:初中数学 来源: 题型:选择题
A. | $\frac{11}{42}$ | B. | $\frac{1}{4}$ | C. | $\frac{1}{3}$ | D. | $\frac{1}{2}$ |
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | 6 | B. | 7 | C. | 8 | D. | 9 |
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | 4 | B. | 8 | C. | 12 | D. | 16 |
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | 4 | B. | 4$\sqrt{2}$ | C. | 8 | D. | 8$\sqrt{2}$ |
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | 55° | B. | 60° | C. | 65° | D. | 70° |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com