精英家教网 > 初中数学 > 题目详情

【题目】茗阳阁位于河南省信阳市狮河区茶韵路一号,建成于2007429日.是一栋由多种中国建筑元素,由雕栏飞檐、勾心斗角、斗拱图腾等多种形式的中国古代建筑元素汇聚而成,具有浓郁地方古建筑特色的塔式阁楼.茗阳阁是信阳新建的城市文化与形象的代表建筑之一,同时茗阳阁旁的风景也是优美至极.某数学课外兴趣小组为了测量建在山丘上的茗阳阁的高度,在山脚下的广场上处测得建筑物点(即山顶)的仰角为20°,沿水平方向前进20米到达点,测得建筑物顶部点的仰角为45°,已知山丘37.69米.求塔的高度.(结果精确到1米,参考数据:

【答案】塔高为47米.

【解析】

由题意可知CEAE,由已知可得,设塔高高为,则有,继而可得,在直角三角形中利用,代入相关数据即可求得答案.

由题意可知

又∵45°,

设塔高高为

又∵

在直角三角形

解得米,

答:塔高为47米.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】我市某乡镇实施产业精准扶贫,帮助贫困户承包了若干亩土地种植新品草莓,已知该草莓的成本为每千克10元,草莓成熟后投入市场销售,经市场调查发现,草莓销售不会亏本,且每天的销售量y(千克)与销售单价x(元/千克)之间函数关系如图所示.

1)求yx的函数关系式,并写出x的取值范围.

2)当该品种草莓的定价为多少时,每天销售获得利润最大?最大利润是多少?

3)某村今年草莓采摘期限30天,预计产量6000千克,则按照(2)中的方式进行销售,能否销售完这批草莓?请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】 某校为了解九年级男同学的体育考试准备情况,随机抽取部分男同学进行了1000米跑测试.按照成绩分为优秀、良好、合格与不合格四个等级.学校绘制了如下不完整的统计图.

(1)根据给出的信息,补全两幅统计图

(2)该校九年级有600名男生,请估计成绩未达到良好有多少名?

(3)某班甲、乙两位成绩优秀的同学被选中参加即将举行的学校运动会1000米比赛预赛分为A、B、C三组进行,选手由抽签确定分组.甲、乙两人恰好分在同一组的概率是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在ABC 中,AB = AC,以AB为直径的⊙O 别交ACBC于点 DE,过点B作⊙O的切线, AC的延长线于点F

(1) 求证:∠CBF =CAB

(2) CD = 2,求FC的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图是二次函数y=ax2+bx+c(a,b,c是常数,a0)图象的一部分,与x轴的交点A在点(2,0)和(3,0)之间,对称轴是x=1.对于下列说法:①ab<0;②2a+b=0;③3a+c>0;④a+b≥m(am+b)(m为实数);当﹣1<x<3时,y0,其中正确的是(  

A. ①②④ B. ①②⑤ C. ②③④ D. ③④⑤

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】中,边上的动点,连结.

1)如图,若,求的长;

2)如图,若的中点,把绕点顺时针旋转度()后得到,连结,点中点.求证:是等边三角形.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,河流的两岸PQMN互相平行,河岸PQ上有一排小树,已知相邻两树之间的距离CD=50米,某人在河岸MNA处测得∠DAN=35°,然后沿河岸走了120米到达B处,测得∠CBN=70°.求河流的宽度CE(结果保留两个有效数字).(参考数据:sin35°≈0.57cos35°≈0.82tan35°≈0.70sin70°≈0.94cos70°≈0.34tan70°≈2.75

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知二次函数yax2bxc(a0)的图象如图所示,则正比例函数y(bc)x

的图象与反比例函数的图象在同一坐标系中大致是【 】

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为庆祝改革开放40周年,深圳举办了灯光秀,某数学兴趣小组为测量“平安金融中心”AB的高度,他们在地面C处测得另一幢大厦DE的顶部E处的仰角∠ECD=32°.登上大厦DE的顶部E处后,测得“平安中心”AB的顶部A处的仰角为60°,(如图).已知CDB三点在同一水平直线上,且CD=400米,DB=200米.

1)求大厦DE的高度;

2)求平安金融中心AB的高度.

(参考数据:sin32°≈0.53cos32°≈0.85tan32°≈0.621.411.73

查看答案和解析>>

同步练习册答案