精英家教网 > 初中数学 > 题目详情
6.如图,在矩形ABCD中,AB=4,AD=2,以点A为圆心,AB长为半径画圆弧交边DC于点E,则$\widehat{BE}$的长度为$\frac{2}{3}π$.

分析 连接AE,根据直角三角形的性质求出∠DEA的度数,根据平行线的性质求出∠EAB的度数,根据弧长公式求出$\widehat{BE}$的长度.

解答 解:连接AE,
在Rt三角形ADE中,AE=4,AD=2,
∴∠DEA=30°,
∵AB∥CD,
∴∠EAB=∠DEA=30°,
∴$\widehat{BE}$的长度为:$\frac{30×π×4}{180}$=$\frac{2}{3}π$,
故答案为:$\frac{2}{3}π$.

点评 本题考查的是弧长的计算和直角三角形的性质,掌握在直角三角形中,30°所对的直角边是斜边的一半和弧长公式是解题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:填空题

16.把-0.22,-2-2,${({-\frac{1}{2}})^{-2}}$,${({-\frac{1}{2}})^0}$用“>”号连接:${({-\frac{1}{2}})^{-2}}$>${({-\frac{1}{2}})^0}$>-0.22>-2-2

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

17.如图,已知抛物线C1:y=a1x2+b1x+c1和C2:y=a2x2+b2x+c2都经过原点,顶点分别为A,B,与x轴的另一交点分别为M,N,如果点A与点B,点M与点N都关于原点O成中心对称,则称抛物线C1和C2为姐妹抛物线,请你写出一对姐妹抛物线C1和C2,使四边形ANBM恰好是矩形,你所写的一对抛物线解析式是y=-$\sqrt{3}$x2+2$\sqrt{3}$x和y=$\sqrt{3}$x2+2$\sqrt{3}$x(答案不唯一).

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

14.如图,正方形ABCD的边长是16,点E在边AB上,AE=3,点F是边BC上不与点B,C重合的一个动点,把△EBF沿EF折叠,点B落在B′处.若△CDB′恰为等腰三角形,则DB′的长为16或4$\sqrt{5}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

1.图1、图2是两张形状、大小完全相同的方格纸,方格纸中的每个小正方形的边长均为1,每个小正方形的顶点叫做格点.
(1)在图1中画出等腰直角三角形MON,使点N在格点上,且∠MON=90°;
(2)在图2中以格点为顶点画一个正方形ABCD,使正方形ABCD面积等于(1)中等腰直角三角形MON面积的4倍,并将正方形ABCD分割成以格点为顶点的四个全等的直角三角形和一个正方形,且正方形ABCD面积没有剩余(画出一种即可).

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

11.在△ABC中,点D,E,F分别在AB,BC,AC上,且∠ADF+∠DEC=180°,∠AFE=∠BDE.
(1)如图1,当DE=DF时,图1中是否存在与AB相等的线段?若存在,请找出,并加以证明;若不存在,说明理由;
(2)如图2,当DE=kDF(其中0<k<1)时,若∠A=90°,AF=m,求BD的长(用含k,m的式子表示).

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

18.下列给出5个命题:
①对角线互相垂直且相等的四边形是正方形
②六边形的内角和等于720°
③相等的圆心角所对的弧相等
④顺次连接菱形各边中点所得的四边形是矩形
⑤三角形的内心到三角形三个顶点的距离相等.
其中正确命题的个数是(  )
A.2个B.3个C.4个D.5个

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

15.如图,四边形OABC是矩形,点A、C在坐标轴上,△ODE是△OCB绕点O顺时针旋转90°得到的,点D在x轴上,直线BD交y轴于点F,交OE于点H,线段BC、OC的长是方程x2-6x+8=0的两个根,且OC>BC.
(1)求直线BD的解析式;
(2)求△OFH的面积;
(3)点M在坐标轴上,平面内是否存在点N,使以点D、F、M、N为顶点的四边形是矩形?若存在,请直接写出点N的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

16.下列各式计算正确的是(  )
A.$\sqrt{2}$+$\sqrt{3}$=$\sqrt{5}$B.4$\sqrt{3}$-3$\sqrt{3}$=1C.2$\sqrt{3}$×3$\sqrt{3}$=6$\sqrt{3}$D.$\sqrt{27}$÷$\sqrt{3}$=3

查看答案和解析>>

同步练习册答案