精英家教网 > 初中数学 > 题目详情

【题目】如图,AB是⊙O的直径,C是⊙O上一点,连接AC.过点B作⊙O的切线,交AC的延长线于点D,在AD上取一点E,使AE=AB,连接BE,交⊙O于点F.

请补全图形并解决下面的问题:

(1)求证:∠BAE=2∠EBD;

(2)如果AB=5,sin∠EBD=.求BD的长.

【答案】(1)证明见解析;(2)BD=.

【解析】

(1)利用等腰三角形的性质证明∠BAE=2∠BAF,再证明∠EBD=∠BAF即可解决问题;

(2)作EHBDH.由sin∠BAF=sin∠EBDAB=5,推出BF,推出BE=2BF=2,在Rt△ABF中,EHBEsin∠EBH=2,推出BH=4,由EHAB,推出,由此即可求出DH解决问题;

(1)证明:连接AF.

∵AB是直径,

∴∠AFB=90°,

∴AF⊥BE,

∵AB=AE,

∴∠BAE=2∠BAF,

∵BD是⊙O的切线,

∴∠ABD=90°,

∵∠BAF+∠ABE=90°,∠ABF+∠EBD=90°,

∴∠EBD=∠BAF,

∴∠BAE=2∠EBD.

(2)解:作EH⊥BD于H.

∵∠BAF=∠EBD,

∴sin∠BAF=sin∠EBD=,∵AB=5,

∴BF=

∴BE=2BF=2

在Rt△ABF中,EH=BEsin∠EBH=2,

∴BH==4,

∵EH∥AB,

∴DH=

∴BD=BH+HD=

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,从热气球C上测得两建筑物AB底部的俯角分别为30°60度.如果这时气球的高度CD90米.且点ADB在同一直线上,求建筑物AB间的距离.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,ABC是等边三角形,BD是中线,延长BCECE=CD

1)求证:DB=DE

2)在图中过DDFBEBEF,若CF=4,求ABC的周长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在如图所示的平面直角坐标系中,△ABC的三个顶点都在小正方形的顶点处,请结合图完成下列各题:

(1)写出tan∠ABC;AB的值;(结果保留根号).

(2)将△ABC绕原点O旋转180°,画出旋转对应的△A′B′C′,并求直线A′C′的函数表达式.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】阅读下面材料:

在数学课上,老师请同学们思考如下问题:

请利用直尺和圆规四等分弧AB.

小亮的作法如下:

如图,

(1)连接AB;

(2)作AB的垂直平分线CD交弧AB于点M.交AB于点T;

(3)分别作线段AT,线段BT的垂直平分线EF,GH,交弧AB于N,P两点;

那么N,M,P三点把弧AB四等分.

老师问:“小亮的作法正确吗?”

请回备:小亮的作法_____(“正确”或“不正确”)理由是_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,△ABC是等边三角形,D,E分别是AC,BC边上的点,且AD=CE,连接BD,AE相交于点F.

(1)∠BFE的度数是多少;

(2)如果,那么等于多少;

(3)如果时,请用含n的式子表示AF,BF的数量关系,并证明.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,ABBCO的弦,B=60°,点OB内,点D上的动点,点MNP分别是ADDCCB的中点.若O的半径为2,则PN+MN的长度的最大值是(  )

A.

B.

C.

D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,港口A在观测站O的正东方向,OA=4.某船从港口A出发,沿北偏东15°方向航行一段距离后到达B,此时从观测站O处测得该船位于北偏东60°的方向,则该船航行的距离(AB的长)____.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,某一时刻太阳光从教室窗户射入室内,与地面的夹角,窗户的一部分在教室地面所形成的影长米,窗户的高度米.求窗外遮阳蓬外端一点到教室窗户上椽的距离.(参考数据:,结果精确米)

查看答案和解析>>

同步练习册答案