精英家教网 > 初中数学 > 题目详情
已知:如图①,在Rt△ACB中,∠C=90º,AC=6cm,BC=8cm,点P由B出发沿BC方向向点C匀速运动,速度为2cm/s;点Q由A出发沿AB方向向点B匀速运动,速度为1cm/s;连接PQ.若设运动的时间为t(s)(0<t<4),解答下列问题:

(1)当t为何值时,PQ的垂直平分线经过点B?
(2)如图②,连接CQ.设△PQC的面积为y(cm2),求y与t之间的函数关系式;

(3)如图②,是否存在某一时刻t,使线段C Q恰好把四边形ACPQ的面积分成1:2的两部分?若存在,求出此时t的值;若不存在,说明理由.
(1)当t=时,PQ的垂直平分线经过点B;
(2)
(3)存在,当时,线段C Q恰好把四边形ACPQ的面积分成1:2的两部分.

试题分析:(1)用含有t的代数式表示PB和BQ,再根据线段垂直平分线上的点到线段两段点的距离相等即可;
(2)先证△BQH∽△BAC,再根据相似三角形的对应边成比例即可;
(3)分两种情况讨论:当SAQC=2SPQC时和当2SAQC =SPQC时,分别求出t的值.
试题解析:(1)在Rt△ABC中,AB=
∵PQ的垂直平分线经过点B
∴PB=BQ
∵PB=2t,PQ=10-t,
∴2t=10-t
解得:t=
即:当t=时,PQ的垂直平分线经过点B;
(2) 如图①过点Q作QH⊥BC于H.

∵∠C=90°,
∴AC⊥BC,
∴QH∥AC,
∴△BQH∽△BAC,
,
,
,

(3)存在
如图②过点Q作QM⊥BC于M,QN⊥AC于N,

∵QM⊥BC于M,∠ACB=90°,
∴QM∥AC,
∴△BQM∽△BAC,
,
,
,
∵QN⊥AC于N,∠ACB=90°,
∴QN∥BC,
∴△AQN∽△ABC,
,
,
,
∵线段CQ恰好把四边形ACPQ的面积分成1:2的两部分,
∴SAQC=2SPQC或2SAQC =SPQC
当SAQC=2SPQC时,



当2SAQC =SPQC时,



综上可知:当时,线段C Q恰好把四边形ACPQ的面积分成1:2的两部分.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

小赵投资销售一种进价为每件20元的护眼台灯.销售过程中发现,当月内销售单价不变,则月销售量y(件)与销售单价x(元)之间的关系可近似的看作一次函数:
(1)设小赵每月获得利润为w(元),当销售单价定为多少元时,每月可获得最大利润?并求出最大利润.
(2)如果小赵想要每月获得的利润不低于2000元,那么如何制定销售单价才可以实现这一目标?

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,在平面直角坐标系中,已知抛物线轴于A(2,0),B(6,0)两点,交轴于点C(0,).

(1)求此抛物线的解析式;
(2)若此抛物线的对称轴与直线交于点D,作⊙D与x轴相切,⊙D交轴于点E、F两点,求劣弧EF所对圆心角的度数;
(3)P为此抛物线在第二象限图像上的一点,PG垂直于轴,垂足为点G,试确定P点的位置,使得△PGA的面积被直线AC分为1︰2两部分.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

某超市准备进一批每个进价为40元的小家电,经市场调查预测,售价定为50元时可售出400个;定价每增加1元,销售量将减少10个.
(1)设每个定价增加元,此时的销售量是多少?(用含的代数式表示)
(2)超市若准备获得利润6000元,并且使进货量较少,则每个应定价为多少元?
(3)超市若要获得最大利润,则每个应定价多少元?获得的最大利润是多少?

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,P是抛物线上的一点,以点P为圆心、1个单位长度为半径作⊙P,当⊙P与直线y=2相切时,点P的坐标为                  

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

抛物线的最小值是 _________.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

已知二次函数y=ax2+bx+c(a≠0)的图像如图,则下列结论中正确的是(  )
A.a>0 B.当x>1时,y随x的增大而增大
C.c<0D.3是方程ax2+bx+c=0的一个根

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

在平面直角坐标系中,将函数y=2x2的图象先向右平移1个单位,再向上平移5个单位得到图象的函数关系式是(   )
A.y=2(x-1)2-5B.y=2(x-1)2+5
C.y=2(x+1)2-5D.y=2(x+1)2+5

查看答案和解析>>

同步练习册答案