【题目】已知函数y=kx2+(2k+1)x+1(k为实数).
(1)对于任意实数k,函数图象一定经过点(﹣2,﹣1)和点_____;
(2)对于任意正实数k,当x>m时,y随着x的增大而增大,写出一个满足题意的m的值.
【答案】(1) (0,1);(2) 0.
【解析】
(1)分别将x取﹣2或0时,计算相应的函数值,即可得到答案;
(2)先由k>0,判断函数图象的开口方向,再求出函数的对称轴,则m>﹣1时均符合题意,任取范围内一个m值即可.
解:(1)∵y=kx2+(2k+1)x+1(k为实数).
∴当x=﹣2时,y=4k+(2k+1)×(﹣2)+1=1,
当x=0时,y=0+0+1=1,
∴对于任意实数k,函数图象一定经过点(﹣2,﹣1)和点 (0,1),
故答案为:(0,1);
(2)∵k为任意正整数,
∴k>0,
∴函数图象开口向上,
∵函数y=kx2+(2k+1)x+1的对称轴为,
∴在对称轴右侧,y随x的增大而增大,
∵x>m时,y随x的增大而增大,
∴,
故m=0时符合题意.(答案不唯一,m≥﹣1即可).
故答案为:0.
科目:初中数学 来源: 题型:
【题目】某超市计划购进甲、乙两种商品,两种商品的进价、售价如下表:
商品 | 甲 | 乙 |
进价(元/件) | x60 | x |
售价(元/件) | 200 | 100 |
若用1800元购进甲种商品的件数与用900元购进乙种商品的件数相同.
(1)求甲、乙两种商品的进价是多少元?
(2)若超市销售甲、乙两种商品共100件,其中销售甲种商品为a件(a40),设销售完100件甲、乙两种商品的总利润为w元,求w与a之间的函数关系式,并求出w的最小值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系xOy中,反比例函数y=(x>0)的图象G与直线l:y=2x﹣4交于点A(3,a).
(1)求k的值;
(2)已知点P(0,n)(n>0),过点P作平行于x轴的直线,与图象G交于点B,与直线l交于点C.横、纵坐标都是整数的点叫做整点.记图象G在点A,B之间的部分与线段AC,BC围成的区域(不含边界)为W.
①当n=5时,直接写出区域W内的整点个数;
②若区域W内的整点恰好为3个,结合函数图象,直接写出n的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,在等腰Rt△ABC中,∠BAC=90°,AB=AC=2,点M为BC中点.点P为AB边上一动点,点D为BC边上一动点,连接DP,以点P为旋转中心,将线段PD逆时针旋转90°,得到线段PE,连接EC.
(1)当点P与点A重合时,如图2.
①根据题意在图2中完成作图;
②判断EC与BC的位置关系并证明.
(2)连接EM,写出一个BP的值,使得对于任意的点D总有EM=EC,并证明.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在Rt△ABC中,∠A=90°,∠B=22.5°,点P为线段BC上一动点,当点P运动到某一位置时,它到点A,B的距离都等于a,到点P的距离等于a的所有点组成的图形为W,点D为线段BC延长线上一点,且点D到点A的距离也等于a.
(1)求直线DA与图形W的公共点的个数;
(2)过点A作AE⊥BD交图形W于点E,EP的延长线交AB于点F,当a=2时,求线段EF的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在中, .在同一平面内,内部一点到的距离都等于(为常数),到点的距离等于的所有点组成图形.
(1)直接写出的值;
(2)连接并延长,交于点,过点作于点.
①求证:;
②求直线与图形的公共点个数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】抛物线y=﹣x2+bx+c上部分点的横坐标x,纵坐标y的对应值如下表所示:
x | … | ﹣2 | ﹣1 | 0 | 1 | 2 | … |
y | … | 0 | 4 | 6 | 6 | 4 | … |
从上表可知,下列说法中,错误的是( )
A. 抛物线于x轴的一个交点坐标为(﹣2,0)
B. 抛物线与y轴的交点坐标为(0,6)
C. 抛物线的对称轴是直线x=0
D. 抛物线在对称轴左侧部分是上升的
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,直线与轴交于点,与轴交于点,抛物线经过点,.
(1)求点B的坐标和抛物线的解析式;
(2)M(m,0)为x轴上一个动点,过点M垂直于x轴的直线与直线AB和抛物线分别交于点P、N,
①点在线段上运动,若以,,为顶点的三角形与相似,求点的坐标;
②点在轴上自由运动,若三个点,,中恰有一点是其它两点所连线段的中点(三点重合除外),则称,,三点为“共谐点”.请直接写出使得,,三点成为“共谐点”的的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】“互联网+”时代,网上购物备受消费者青睐.某网店专售一种商品,其成本为每件元,已知销售过程中,销售单价不低于成本单价,且物价部门规定这种商品的获利不得高于.据市场调查发现,月销售量(件)与销售单价(元)之间的函数关系如表:
销售单价(元) | 65 | 70 | 75 | 80 | ··· |
月销售量(件) | 475 | 450 | 425 | 400 | ··· |
请根据表格中所给数据,求出关于的函数关系式;
设该网店每月获得的利润为元,当销售单价为多少元时,每月获得的利润最大,最大利润是多少?
该网店店主热心公益事业,决定每月从利润中捐出元资助贫困学生.为了保证捐款后每月利润不低于元,且让消费者得到最大的实惠,该如何确定该商品的销售单价?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com