精英家教网 > 初中数学 > 题目详情

【题目】如图,已知抛物线l1:y=(x﹣2)2﹣2与x轴分别交于O、A两点,将抛物线l1向上平移得到l2 , 过点A作AB⊥x轴交抛物线l2于点B,如果由抛物线l1、l2、直线AB及y轴所围成的阴影部分的面积为16,则抛物线l2的函数表达式为(  )

A.y=(x﹣2)2+4
B.y=(x﹣2)2+3
C.y=(x﹣2)2+2
D.y=(x﹣2)2+1

【答案】C
【解析】解:连接BC,
∵l2是由抛物线l1向上平移得到的,
∴由抛物线l1、l2、直线AB及y轴所围成的阴影部分的面积就是矩形ABCO的面积;
∵抛物线l1的解析式是y=(x﹣2)2﹣2,
∴抛物线l1与x轴分别交于O(0,0)、A(4,0)两点,
∴OA=4;
∴OAAB=16,
∴AB=4;
∴l2是由抛物线l1向上平移4个单位得到的,
∴l2的解析式为:y=(x﹣2)2﹣2+4,即y=(x﹣2)2+2.
故选C.

【考点精析】掌握二次函数图象的平移是解答本题的根本,需要知道平移步骤:(1)配方 y=a(x-h)2+k,确定顶点(h,k)(2)对x轴左加右减;对y轴上加下减.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】已知:如图,在ABCD中,点FAB的延长线上,且BF=AB,连接FD,交BC于点E

1)说明△DCE≌△FBE的理由;

2)若EC=3,求AD的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,平行四边形ABCD中,E,F分别为AD,BC边上的一点,增加下列条件,不能得出BEDF的是(  )

A. AE=CF B. BE=DF C. ∠EBF=∠FDE D. ∠BED=∠BFD

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在正方形ABCD中,E为BC边上的点(不与B,C重合),F为CD边上的点(不与C,D重合),且AE=AF,AB=4,设△AEF的面积为y,EC的长为x,求y关于x的函数关系式,并写出自变量x的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】函数 y=(a为常数)的图象上有三点(﹣4,y1),(﹣1,y2),(2,y3),则函数值y1 , y2 , y3的大小关系是(  )
A.y3<y1<y2
B.y3<y2<y1
C.y1<y2<y3
D.y2<y3<y1

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,△ABC是面积为1的等边三角形。取BC边中点E,作ED∥AB,

EF∥AC,得到四边形EDAF,它的面积记做S1;取BE中点G,做GH∥FB,GK∥EF,

得到四边形GHFK,它的面积记作S2.照此规律作下去,

S2018=__________________.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】第五届中国机器人峰会将于59日在余姚开幕某公司购买一种T恤衫参加此次峰会.了解到某商店正好有这种T恤衫的促销,当购买10件时每件140元,购买数量每增加1件单价减少1元;当购买数量为60(60)以上时,一律每件80元.

(1)如果购买(10<<60),每件的单价为元,请写出关于的函数关系式;

(2)如果该公司共购买了100T恤衫,由于某种原因需分两批购买,且第一批购买量多于30件且少于60件.已知购买两批T恤衫一共花了9200元,求第一批T恤衫的购买数量.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】正方形ABCD的一条对角线长为8,则这个正方形的面积是(  )
A.4
B.32
C.64
D.128

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在正方形纸片ABCD中,对角线AC、BD交于点O,折叠正方形纸片ABCD,使AD落在BD上,点A恰好与BD上的点F重合.展开后,折痕DE分别交AB、AC于点E、G.连接GF.下列结论:①∠AGD=112.5°;AD:AE=2;SAGD=SOGD④四边形AEFG是菱形;⑤BE=2 OG。其中正确结论的序号是______.

查看答案和解析>>

同步练习册答案