精英家教网 > 初中数学 > 题目详情

已知等腰△ABC中,AB=AC,
(1)若cos∠B=数学公式,且△ABC的周长为24,求AB的长度;
(2)若tan∠A=数学公式,且BC=数学公式,求AB的长度.

解:(1)过点A作AD⊥BC,垂足为D,
∴∠ADB=90°
∴在△ADC中,cos∠B==
设BD=k,AB=3k.
∵AB=AC,AD⊥BC
∴BD=DC=k,
∵△ABC的周长为24,
∴AB+AC+BC=24.
∴3k+3k+2k=24,即8k=24,
∴k=3
∴AB=9;

(2)解:作BH⊥AC于点H,
∴∠AHB=90°
∴在△AHB中,tan∠A==
设BH=k,AH=2k.
在Rt△ABH中,AB=
∵AB=AC,
∴CH=AC-HC=k,
∵在△BHC中,BH=k,CH=k,BC=
又∵∠BHC=90°.
∴BH2+HC2=BC2,即5x2+x2=12
解得:x=
∴AB=
分析:(1)过点A作AD⊥BC,垂足为D,根据余弦的定义即可求解;
(2)作BH⊥AC于点H,∴∠AHB=90°,根据直角三角形的性质即可求解.
点评:本题考查了解直角三角形,属于基础题,关键是掌握直角三角形的基本性质.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

24、(1)如图,△ABC纸片中,∠A=36°,AB=AC,请你剪两刀,分成3张小纸片,使每张小纸片都是等腰三角形.请画出示意图,并标明必要的角度;
(2)已知等腰△ABC中,AB=AC,D为BC边上一点,连接AD,若△ACD与△ABD都是等腰三角形,则∠B的度数是
45°或36°
;(请画出示意图,并标明必要的角度)
(3)现将(1)中的等腰三角形改为△ABC中,∠A=36°,从点B出发引一直线可分成两个等腰三角形,则原三角形的最大内角的所有可能值是
72°、108°、90°、126°
.(直接写出答案).

查看答案和解析>>

科目:初中数学 来源: 题型:

12、如图:已知等腰△ABC中,腰AB=AC=13cm,底BC=24cm,求△ABC的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•潜江模拟)已知等腰△ABC中,AD⊥BC于点D,且AD=
1
2
BC,则△ABC底角的度数为(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

已知等腰△ABC中,AB=AC=13,BC=10
(1)如图①,△ABC的面积=
60
60
,腰AC上的高BD=
120
13
120
13

(2)如图②,P是底边BC上任意一点,PE⊥AB于E,PF⊥AC于F,连接AP,不难发现:△ABP的面积+△ACP的面积=△ABC的面积,据此式,你能求出PE+PF等于多少吗?你有什么发现?
(3)如图③四边形BCGH是形状、大小一定的等腰梯形,点P是下底BC上一动点,试问:点P到两腰的距离之和是否为一定值?简述理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知等腰△ABC中,AB=AC,若AB的垂直平分线与边AC所在直线相交所得锐角为40°,则等腰△ABC的底角∠B的大小为
65°或25°
65°或25°

查看答案和解析>>

同步练习册答案