分析 (1)由方程有两个不相等的实数根结合根的判别式即可得出关于m的一元一次不等式,解之即可得出实数m的取值范围;
(2)设方程的另一根为x1,由根与系数的关系即可得出关于m、x1的二元一次方程组,解之即可得出结论.
解答 解:(1)依题意得:△=b2-4ac=22-4×1×(m-2)=12-4m>0,
解得:m<3.
∴若该方程有两个不相等的实数根,实数m的取值范围为m<3.
(2)设方程的另一根为x1,
由根与系数的关系得:$\left\{\begin{array}{l}1+{x_1}=-2\\ 1•{x_1}=m-2\end{array}\right.$,
解得:$\left\{\begin{array}{l}{x_1}=-3\\ m=-1\end{array}\right.$,
∴m的值为-1,该方程的另一根为-3.
点评 本题考查了根与系数的关系、根的判别式以及解二元一次方程组,解题的关键是:(1)熟练掌握“当△>0时,方程有两个不相等的实数根”;(2)利用根与系数的关系找出关于m、x1的二元一次方程组.
科目:初中数学 来源: 题型:选择题
A. | 10 | B. | 11 | C. | 12 | D. | 13 |
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | ![]() | B. | ![]() | C. | ![]() | D. | ![]() |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | ($\frac{3x}{5y}$)2=$\frac{3{x}^{2}}{5{y}^{2}}$ | B. | $\frac{1}{x-y}-\frac{1}{y-x}$=0 | C. | $\frac{1}{3x}+\frac{1}{3y}=\frac{1}{3(x+y)}$ | D. | ($\frac{{x}^{2}}{-y}$)3=-$\frac{{x}^{6}}{{y}^{3}}$ |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com