精英家教网 > 初中数学 > 题目详情
(2010•李沧区二模)如图,四边形OABC为直角梯形,OA⊥CO,CB∥OA,OA=CO=4,BC=3.点M从O出发以每秒2个单位长度的速度向A运动;点N从B同时出发,以每秒1个单位长度的速度向C运动.其中一个动点到达终点时,另一个动点也随之停止运动.过点N作NP⊥AO于点P,连接AC交NP于Q,连接MQ、BQ.
(1)求△AQM的面积S与运动时间t的函数关系式;
(2)当t为何值时,S△BCQ:S△AQM=3:2?
(3)是否存在某一时刻t,使得△AQM为直角三角形?若存在,求出相应的t值,若不存在,说明理由.
分析:(1)经过t秒时可得NB=y,OM-2t.根据∠BCA=∠MAQ=45°推出QN=CN,PQ的值.再根据三角形面积公式求出S与t的函数关系式.
(2)用含t的式子先表示出S△BCQ,S△AQM,然后根据两者之比为3:2可得出t的值.
(3)本题分两种情况讨论(若∠AQM=90°,PQ是等腰Rt△MQA底边MA上的高;若∠QMA=90°,QM与QP重合)求出t值.
解答:解:(1)经过t秒时,NB=t,OM=2t,
则CN=3-t,AM=4-2t,
∵∠BCA=∠MAQ=45°,
∴QN=CN=3-t,
∴PQ=1+t,
∴S△AMQ=
1
2
AM•PQ=
1
2
(4-2t)(1+t)=-t2+t+2.

(2)由题意得,CN=NQ=3-t,QP=1+t,AM=4-2t,
∴S△BCQ=
1
2
×3(3-t),S△AQM=
1
2
(4-2t)(1+t),
又∵S△BCQ:S△AQM=3:2,即3(3-t):(4-2t)(1+t)=3:2,
解得:t=1,
即当t=1时,S△BCQ:S△AQM=3:2.

(3)存在.
设经过t秒时,NB=t,OM=2t,
则CN=3-t,AM=4-2t,
∴∠BCA=∠MAQ=45°,
①若∠AQM=90°,则PQ是等腰Rt△MQA底边MA上的高,
∴PQ是底边MA的中线,
∴PQ=AP=
1
2
MA,
∴1+t=
1
2
(4-2t),
解得:t=
1
2

②若∠QMA=90°,此时QM与QP重合,
∴QM=QP=MA,
∴1+t=4-2t
∴t=1.
点评:此题考查了直角梯形、直角三角形的性质及相似三角形的判定及性质,属于综合性较强的题目,对于此类动点型题目,首先要确定符合题意的条件下动点所在的位置,然后用时间t表示出有关线段的长度,进而建立关于线段的关系式,难度较大.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2010•李沧区二模)如图,太阳光线与地面成63°角,一棵倾斜的大树(AB)与地面成34°角,这时测得大树在地面的影长约为10米.求AB的长.(结果保留两个有效数字)
(参考数据:sin63°≈
9
10
,tan63°≈2,sin34°≈
3
5
,tan34°≈
2
3

查看答案和解析>>

科目:初中数学 来源: 题型:

(2010•李沧区二模)某电脑公司经销甲种型号电脑,受经济危机影响,电脑价格不断下降.今年三月份的电脑售价比去年同期每台降价1000元,如果卖出相同数量的电脑,去年销售额为10万元,今年销售额只有8万元.
(1)今年三月份甲种电脑每台售价多少元?
(2)为了增加收入,电脑公司决定再经销乙种型号电脑,已知甲种电脑每台进价为3500元,乙种电脑每台进价为3000元,公司预计用不多于5万元且不少于4.8万元的资金购进这两种电脑共15台,共有哪几种进货方案?

查看答案和解析>>

科目:初中数学 来源:2009年浙江省杭州市萧山区中考模拟数学试卷(楼塔镇中 王姣)(解析版) 题型:解答题

(2010•李沧区二模)如图:△ABC是一块直角三角形余料,∠C=90度,工人师傅把它加工成一个正方形零件,使C为正方形的一个顶点,其余三个顶点分别在AB、BC、AC边上,请你协助工人师傅用尺规画出裁割线.(不写画法,保留作图痕迹)

查看答案和解析>>

科目:初中数学 来源:2009年浙江省杭州市萧山区中考模拟数学试卷(临浦镇中2)(解析版) 题型:解答题

(2010•李沧区二模)如图:△ABC是一块直角三角形余料,∠C=90度,工人师傅把它加工成一个正方形零件,使C为正方形的一个顶点,其余三个顶点分别在AB、BC、AC边上,请你协助工人师傅用尺规画出裁割线.(不写画法,保留作图痕迹)

查看答案和解析>>

同步练习册答案