【题目】如图,一次函数yx+b的图象与x轴,y轴分别交于A,B两点,与反比例函数y
(x<0)的图象交于点C(﹣2,2).
(1)求一次函数与反比例函数的表达式;
(2)过点B作x轴的平行线交反比例函数的图象于点D,连接CD.求△BCD的面积.
科目:初中数学 来源: 题型:
【题目】(2016浙江省衢州市)如图,正方形ABCD的顶点A,B在函数(x>0)的图象上,点C,D分别在x轴,y轴的正半轴上,当k的值改变时,正方形ABCD的大小也随之改变.
(1)当k=2时,正方形A′B′C′D′的边长等于____.
(2)当变化的正方形ABCD与(1)中的正方形A′B′C′D′有重叠部分时,k的取值范围是______________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】小芳给校方提供学生体育锻炼的情况报告,在校内对全校学生进行了抽样调查,每位学生只选择一项自己最喜欢的体育运动.其中,代表最喜欢参加兵乒球运动;
代表最喜欢参加羽毛球运动;
代表最喜欢气排球运动;
代表最喜欢篮球运动,下图是她还未完成的条形统计图与扇形统计图,根据统计图所给出的信息,这个样本中最喜欢篮球运动(即
)的百分率与人数是( )
A.24,26%B.33,26.4%C.28,22.4%D.25,23.6%
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系xOy中,直线y=kx(k≠0)与双曲线y=(x>0)交于点A(2,n).
(1)求n及k的值;
(2)点B是y轴正半轴上的一点,且△OAB是等腰三角形,请直接写出所有符合条件的点B的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图①,AB为半圆的直径,O为圆心,C为圆弧上一点,AD垂直于过C点的切线,垂足为D,AB的延长线交直线CD于点E.
(1)求证:AC平分∠DAB;
(2)若AB=6,B为OE的中点,CF⊥AB,垂足为点F,求CF的长;
(3)如图②,连接OD交AC于点G,若=
,求cosE的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,二次函数yx2+bx+c的图象过A(5,0)和B(0,
)两点,射线CE绕点C(0,5)旋转,交抛物线于D,E两点,连接AC.
(1)求二次函数yx2+bx+c的表达式;
(2)连接OE,AE,当△CEO是以CO为底的等腰三角形时,求点E的坐标和△ACE的面积;
(3)如图2,射线CE旋转时,取DE的中点F,以DF为边作正方形DFMN.当点E和点A重合时,正方形DFMN的顶点M恰好落在x轴上.
①求点M的坐标;
②当点E和点A重合时,将正方形DFMN沿射线CE方向以每秒个单位长度平移.设运动时间为t秒.直接写出正方形DFMN落在x轴下方的面积S与时间t(0≤t≤4)的函数表达式.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知AB为⊙O的直径,点C为⊙O上一点,点D为AB延长线一点,连接AC.
(Ⅰ)如图①,OB=BD,若DC与⊙O相切,求∠D和∠A的大小;
(Ⅱ)如图②,CD与⊙O交于点E,AF⊥CD于点F连接AE,若∠EAB=18°,求∠FAC的大小.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】一个不透明的口袋中装有4个完全相同的小球,分别标有数字1、2、3、4,另有一个可以自由旋转的圆盘.被分成面积相等的3个扇形区,分别标有数字1、2、3(如图所示).小颖和小亮想通过游戏来决定谁代表学校参加歌咏比赛,游戏规则为:一人从口袋中摸出一个小球,另一个人转动圆盘,如果所摸球上的数字与圆盘上转出数字之和小于4,那么小颖去;否则小亮去.
(1)用树状图或列表法求出小颖参加比赛的概率;
(2)你认为该游戏公平吗?请说明理由;若不公平,请修改该游戏规则,使游戏公平.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com