精英家教网 > 初中数学 > 题目详情
如果两个三角形不仅是相似三角形,而且每组对应点所在的直线都经过同一

个点,那么这两个三角形叫做位似三角形,它们的相似比又称为位似比,这个点叫做

位似中心。利用三角形的位似可以将一个三角形缩小或放大。

1)选择:如图(1),点O是等边PQR的中心,P’Q’R’分别是OPOQOR

中点,则P’Q’R’与是PQR是位似三角形,此时,P’Q’R’PQR的位似比,位

似中心分别为                 

A. 2,点P      B. ,点P         C. 2,点O      D. ,点O

 

2)如图(2),用下面的方法可以画AOB的内接等边三角形,阅读后证明相应的

问题。画法:AOB内画等边三角形CDE,使点COA上,点DOB上;

连结OE并延长,交AB于点E’,过点E’E’C’//EC,交OA于点C’,作E’D’//ED

OB于点D’连结C’D’,则C’D’E’

答案:
解析:

1D

2)证明:∵ CD//CD∴ ∠ACDACDBDCBDC

∵ DE//EDCE//CE∴ ∠ECAECAEDBEDB

OECOEC

OEDOED∴ ∠DCEDCECDECDE

CEDCED

△CDE为正三角形,

CDE是等边三角形。

 


练习册系列答案
相关习题

科目:初中数学 来源: 题型:

我们知道:如果两个三角形不仅是相似三角形,而且每对对应点所在的直线都经过同一个点,那么这两个三角形叫做位似三角形,它们的相似比又称为位似比,这个点叫做位似中心.利用三角形的位似可以将一个三角形缩小或放大.
(1)选择:如图1,点O是等边三角形PQR的中心,P′、Q′、R′分别是OP、OQ、OR的中点,则△P′Q′R′与△PQR是位似三角形.此时,△P′Q′R′与△PQR的位似比、位似中心分别为
 

(A)2、点P,(B)
1
2
、点P,( C)2、点O,(D)
1
2
、点O;
(2)如图2,用下面的方法可以画△AOB的内接等边三角形.阅读后证明相应问题精英家教网
画法:
①在△AOB内画等边三角形CDE,使点C在OA上,点D在OB上;
②连接OE并延长,交AB于点E′,过点E′作E′C′∥EC,交OA于点C′,作E′D′∥ED,交OB于点D′;
③连接C′D′,则△C′D′E′是△AOB的内接三角形.
求证:△C′D′E′是等边三角形.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

我们知道:如果两个三角形不仅是相似三角形,而且每对对应点所在的直线都经过同一个点,那么这两个三角形叫做位似三角形,它们的相似比又称为位似比,这个点叫做位似中心.利用三角形的位似可以将一个三角形缩小或放大.
(1)选择:如图1,点O是等边三角形PQR的中心,P′、Q′、R′分别是OP、OQ、OR的中点,则△P′Q′R′与△PQR是位似三角形.此时,△P′Q′R′与△PQR的位似比、位似中心分别为______;
(A)2、点P,(B)数学公式、点P,( C)2、点O,(D)数学公式、点O;
(2)如图2,用下面的方法可以画△AOB的内接等边三角形.阅读后证明相应问题
画法:
①在△AOB内画等边三角形CDE,使点C在OA上,点D在OB上;
②连接OE并延长,交AB于点E′,过点E′作E′C′∥EC,交OA于点C′,作E′D′∥ED,交OB于点D′;
③连接C′D′,则△C′D′E′是△AOB的内接三角形.
求证:△C′D′E′是等边三角形.

查看答案和解析>>

科目:初中数学 来源:同步题 题型:解答题

如果两个三角形不仅是相似三角形,而且每组对应点所在的直线都经过同一个点,对应边平行,那么这两个三角形也是位似三角形,它们的相似比是位似比,这个点是位似中心,利用三角形的位似可以将一个三角形缩小或放大。
(1)如图(1)所示,点O是等边三角形PQR的中心,P′、Q′、R′分别是OP、OQ、OR的中点,则△P′Q′R′与△PQR是位似三角形,此时△P′Q′R′与△PQR的位似比、位似中心分别为(    )   
A.2、点P    
B.、点P
C.2、点O    
D.、点O
(2)如图(2)所示,用下面的方法可以画△AOB的内接等边三角形,阅读后证明相应问题。
画法:
①在△ABO内画等边△CDE,使点C在OA上,点D在OB上;  
②连接OE并延长,交AB于点E′,过点E′作E′C′∥EC,交OA于点C′,作E'D′∥ED,交OB于点D′;  
③连接C′D′,则△C′D′E′是△AOB的内接等边三角形,试说明△C′D′E′是等边三角形。

查看答案和解析>>

科目:初中数学 来源:2004年全国中考数学试题汇编《图形的相似》(06)(解析版) 题型:解答题

(2004•南京)我们知道:如果两个三角形不仅是相似三角形,而且每对对应点所在的直线都经过同一个点,那么这两个三角形叫做位似三角形,它们的相似比又称为位似比,这个点叫做位似中心.利用三角形的位似可以将一个三角形缩小或放大.
(1)选择:如图1,点O是等边三角形PQR的中心,P′、Q′、R′分别是OP、OQ、OR的中点,则△P′Q′R′与△PQR是位似三角形.此时,△P′Q′R′与△PQR的位似比、位似中心分别为______;
(A)2、点P,(B)、点P,( C)2、点O,(D)、点O;
(2)如图2,用下面的方法可以画△AOB的内接等边三角形.阅读后证明相应问题.
画法:
①在△AOB内画等边三角形CDE,使点C在OA上,点D在OB上;
②连接OE并延长,交AB于点E′,过点E′作E′C′∥EC,交OA于点C′,作E′D′∥ED,交OB于点D′;
③连接C′D′,则△C′D′E′是△AOB的内接三角形.
求证:△C′D′E′是等边三角形.

查看答案和解析>>

科目:初中数学 来源:2004年全国中考数学试题汇编《三角形》(12)(解析版) 题型:解答题

(2004•南京)我们知道:如果两个三角形不仅是相似三角形,而且每对对应点所在的直线都经过同一个点,那么这两个三角形叫做位似三角形,它们的相似比又称为位似比,这个点叫做位似中心.利用三角形的位似可以将一个三角形缩小或放大.
(1)选择:如图1,点O是等边三角形PQR的中心,P′、Q′、R′分别是OP、OQ、OR的中点,则△P′Q′R′与△PQR是位似三角形.此时,△P′Q′R′与△PQR的位似比、位似中心分别为______;
(A)2、点P,(B)、点P,( C)2、点O,(D)、点O;
(2)如图2,用下面的方法可以画△AOB的内接等边三角形.阅读后证明相应问题.
画法:
①在△AOB内画等边三角形CDE,使点C在OA上,点D在OB上;
②连接OE并延长,交AB于点E′,过点E′作E′C′∥EC,交OA于点C′,作E′D′∥ED,交OB于点D′;
③连接C′D′,则△C′D′E′是△AOB的内接三角形.
求证:△C′D′E′是等边三角形.

查看答案和解析>>

同步练习册答案