【题目】如图1,点E在矩形ABCD的边AD上,AD=6,tan∠ACD=,连接CE,线段CE绕点C旋转90°,得到线段CF,以线段EF为直径做⊙O.
(1)请说明点C一定在⊙O上的理由;
(2)点M在⊙O上,如图2,MC为⊙O的直径,求证:点M到AD的距离等于线段DE的长;
(3)当△AEM面积取得最大值时,求⊙O半径的长;
(4)当⊙O与矩形ABCD的边相切时,计算扇形OCF的面积.
【答案】(1)见解析;(2)证明见解析;(3);(4)4π.
【解析】
(1)连接OC,由旋转的性质得出∠ECF=90°,由直角三角形斜边的中线的性质得出OC=OE=OF,即可得出点C一定在⊙O上;
(2)易证EM=CE,过点M作MN⊥AD于N,由AAS证得△MEN≌△CED,得出MN=DE,即可得出结论;
(3)设AE=x,则DE=6﹣x,由(2)得点M到AD的距离等于线段DE的长,则S△AEM=×x×(6﹣x)=﹣(x﹣3)2+,当x=3时,△AEM面积取得最大值,此时,DE=3,由tan∠ACD==,得出CD=4,由勾股定理得CE2=DE2+CD2,求出CE=5,易证∠CEF=45°,在Rt△CEF中,由EF=,即可得出结果;
(4)当⊙O与矩形ABCD的边相切时,只有点O与点D重合时存在,此时⊙O半径r=CD=4,∠COF=90°,由扇形面积公式即可得出结果
(1)解:点C一定在⊙O上的理由如下:
连接OC,如图所示:
由旋转的性质得:∠ECF=90°,
∵EF是⊙O的直径,O为圆心,
∴OE=OF,
∴OC=OE=OF,
∴点C一定在⊙O上;
(2)证明:由旋转的性质得:∠ECF=90°,CE=CF,
∵OE=OF,
∴CO⊥EF,
∵MC为⊙O的直径,
∴CM⊥EF,OC=OM,∠MEC=90°,
∴EM=CE,
过点M作MN⊥AD于N,如图所示:
∵∠DEC+∠DCE=90°,∠DEC+∠DEM=90°,
∴∠DEM=∠DCE,
在△MEN和△CED中,,
∴△MEN≌△CED(AAS),
∴MN=DE,即点M到AD的距离等于线段DE的长;
(3)解:∵点E在矩形ABCD的边AD上,AD=6,
∴∠D=90°,设AE=x,则DE=6﹣x,
由(2)得:点M到AD的距离等于线段DE的长,
∴S△AEM=×x×(6﹣x)=﹣x2+3x=﹣(x﹣3)2+,
∴当x=3时,△AEM面积取得最大值,
此时,DE=6﹣3=3,
∵tan∠ACD==,
∴CD==4,
由勾股定理得:CE2=DE2+CD2,即CE2=32+42,
∴CE=5,
由(2)得:CM⊥EF,OC=OM,∠MEC=90°,
∴∠CEF=45°,
在Rt△CEF中,EF===5,
∴⊙O半径的长为;
(4)当⊙O与矩形ABCD的边相切时,只有点O与点D重合时存在,此时⊙O半径r=CD=4,∠COF=90°,S扇OCF==4π.
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系中(如图),已知二次函数(其中a、b、c是常数,且a≠0)的图像经过点A(0,-3)、B(1,0)、C(3,0),联结AB、AC.
(1)求这个二次函数的解析式;
(2)点D是线段AC上的一点,联结BD,如果,求tan∠DBC的值;
(3)如果点E在该二次函数图像的对称轴上,当AC平分∠BAE时,求点E的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某中学进行基于学生核心素养课程体系的开发,学校计划开设:艺术、武术、书法、科技共四门选修课,并开展了以“你最想参加的选修课是哪门?(必选且只选一门选修课)”为主题的调查活动,在全校范围内随机抽取部分学生进行问卷调查,将调查结果整理后绘制成如图所示的不完整的统计图.请你根据统计图的信息回答下列问题:
(1)本次调查共抽取了多少名学生?
(2)分别求出参加调查的学生中选择武术和书法选修课的人数,并补全条形统计图;
(3)若该中学共有 1600 名学生,请你估计该中学选择科技选修课的学生大约有多少名.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:Rt△ABC,∠C=90°.
(1)点E在BC边上,且△ACE的周长为AC+BC,以线段AE上一点O为圆心的⊙O恰与AB、BC边都相切.请用无刻度的直尺和圆规确定点E、O的位置;
(2)若BC=8,AC=4,求⊙O的半径.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在一个不透明的口袋中放入个大小形状几乎完全相同实验用的鸡蛋,鸡蛋的质量有微小的差距(用手感觉不到差异),质量分别为、、克,已知随机的摸出一个鸡蛋,摸到克和克的鸡蛋的概率是相等的.
(1)求这四个鸡蛋质量的众数和中位数
(2)小明做实验需要拿走一个鸡蛋,芳芳在小明拿走后从剩下的三个鸡蛋中随机的拿走一个
①通过计算分析小明拿走一个鸡蛋后,剩下的三个鸡蛋质量的中位数是多少?
②假设小明拿走的鸡蛋质量为克,芳芳随机的拿出一个鸡蛋后又放回,之后再随机的拿出一个鸡蛋,请用树状图求芳芳两次拿到都是克的鸡蛋的概率?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,函数的图象经过点,直线与轴交于点.
(1)求的值及点的坐标;
(2)直线与函数的图象交于点,记图象在点,之间的部分与线段,,围成的区域(不含边界)为.
①当时,直接写出区域内的整点个数;
②若区域内恰有2个整点,结合函数图象,求的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,,, ,...都是等腰直角三角形,其直角顶点,,,...均在直线上,设,,,...的面积分别为,,,...,依据图形所反映的规律,S2020=__________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】小亮一家在一湖泊中游玩,湖泊中有一孤岛,妈妈在孤岛P处观看小亮与爸爸在湖中划船(如图所示).小船从P处出发,沿北偏东60°方向划行200米到A处,接着向正南方向划行一段时间到B处.在B处小亮观测到妈妈所在的P处在北偏西37°的方向上,这时小亮与妈妈相距多少米(精确到1米)?
(参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75,≈1.41,≈1.73)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,抛物线与轴交于A,B两点(点A在点B的左侧),直线与抛物线交于两点,其中点的横坐标为2.
(1)求A,B两点的坐标及直线AC的表达式;
(2)P是线段AC上一动点(P与A,C不重合),过点P作轴的平行线交抛物线于点E,求面积的最大值;
(3)点H是抛物线上一动点,在轴上是否存在点F,使得四个点为顶点的四边形是平行四边形?如果存在请直接写出所有满足条件的点F坐标;如果不存在,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com