精英家教网 > 初中数学 > 题目详情
17.已知点(x1,y1)、(x2,y2)、(x3,y3)在双曲线y=-$\frac{1}{x}$上,当x1<0<x2<x3时,y1、y2、y3的大小关系是(  )
A.y1<y2<y3B.y1<y3<y2C.y3<y1<y2D.y2<y3<y1

分析 先根据题意判断出各点所在的象限,再根据函数的增减性即可得出结论.

解答 解:∵反比例函数y=-$\frac{1}{x}$中,k=-1<0,
∴函数图象的两个分支分别位于二四象限,在每一象限内,y随x的增大而增大.
∵x1<0<x2<x3
∴点(x1,y1)位于第二象限,点(x2,y2)、(x3,y3)位于第四象限,
∴y1>0,y2<y3<0,
∴y2<y3<y1
故选D.

点评 本题考查的是反比例函数图象上点的坐标特点,熟知反比例函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:选择题

7.下图是某中学的平面示意图,每个正方形格子的边长为1,如果校门所在位置的坐标为(2,4),小明所在位置的坐标为(-6,-1),那么坐标(3,-2)在示意图中表示的是(  )
A.图书馆B.教学楼C.实验楼D.食堂

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

8.如图(1),P为△ABC所在平面上一点,且∠APB=∠BPC=∠CPA=120°,则点P叫做△ABC的费马点.
(1)如果点P为锐角△ABC的费马点,且∠ABC=60°.
①求证:△ABP∽△BCP;
②若PA=3,PC=4,则PB=2$\sqrt{3}$.
(2)已知锐角△ABC,分别以AB、AC为边向外作正△ABE和正△ACD,CE和BD 相交于P点.如图(2)
①求∠CPD的度数;
②求证:P点为△ABC的费马点.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

5.2016的相反数是(  )
A.2016B.-2016C.$\frac{1}{2016}$D.-$\frac{1}{2016}$

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

12.如图1,已知矩形纸片ABCD.按以下步骤进行操作:①沿对角线AC剪开(如图2);②固定△ADC,将△ABC以2cm/s的速度,沿射线CD的方向运动.设运动时间为ts,运动中△ABC的顶点A、B、C所对应的点分别记作A′、B′、C′,且当t=2时,B′与△ACD的顶点A重合.
(1)请在图3中利用尺规补全当t=1时的图形(保留作图痕迹,不写作法);(友情提醒:请别忘了标注字母!)
(2)若在整个平移过程中,△A′B′C′与△ACD的重叠部分的面积的最大值为3.
①试证明:当t=1时△A′B′C′与△ACD的重叠部分的面积取得最大值;
②请直接写出当t=2时点,A′与点C之间的距离$\sqrt{73}$;
③试探究:当t为何值时,A′C与B′D恰好互相垂直?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

2.已知:正方形ABCD,等腰直角三角板的直角顶点落在正方形的顶点D处,使三角板绕点D旋转.
(1)当三角板旋转到图1的位置时,猜想CE与AF的数量关系,并加以证明;
(2)在(1)的条件下,若DE:AE:CE=1:$\sqrt{7}$:3,求∠AED的度数;
(3)若BC=4,点M是边AB的中点,连结DM,DM与AC交于点O,当三角板的一边DF与边DM重合时(如图2),若OF=$\frac{\sqrt{5}}{3}$,求CN的长.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

9.直线y=-$\frac{1}{2}$x+2与x轴、y轴的交点坐标分别为(4,0)、(0,2).图象不经过第一二四象限,y随x的减小而增大.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

6.如图,抛物线与直线相交于A,B两点,若点A在x轴上,点B的坐标是(2,4),抛物线与x轴另一交点为D,并且△ABD的面积为6,直线AB与y轴的交点的坐标为(0,2).点P是线段AB(不与A,B重合)上的一个动点,过点P作x轴的垂线,交抛物线与点Q.
(1)分别求出抛物线与直线的解析式;
(2)求线段PQ长度的最大值;
(3)当PQ取得最大值时,在抛物线上是否存在M、N两点(点M的横坐标小于N的横坐标),使得P、D、M、N为顶点的四边形是平行四边形?若存在,求出MN的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

18.当x=-1时,$\frac{1+x}{{{x^2}-1}}$=无答案.

查看答案和解析>>

同步练习册答案