8£®Èçͼ£¬Ä³¹ã³¡Éè¼ÆµÄÒ»½¨ÖþÎïÔìÐ͵Ä×ݽØÃæÊÇÅ×ÎïÏßµÄÒ»²¿·Ö£¬Å×ÎïÏߵĶ¥µãOÂäÔÚˮƽÃæÉÏ£¬¶Ô³ÆÖáÊÇˮƽÏßOC£®µãA¡¢BÔÚÅ×ÎïÏßÔìÐÍÉÏ£¬ÇÒµãAµ½Ë®Æ½ÃæµÄ¾àÀëAC=4Ã×£¬µãBµ½Ë®Æ½Ãæ¾àÀëΪ2Ã×£¬OC=8Ã×£®
£¨1£©Ç뽨Á¢Êʵ±µÄÖ±½Ç×ø±êϵ£¬ÇóÅ×ÎïÏߵĺ¯Êý½âÎöʽ£»
£¨2£©ÎªÁË°²È«ÃÀ¹Û£¬ÏÖÐèÔÚˮƽÏßOCÉÏÕÒÒ»µãP£¬ÓÃÖʵء¢¹æ¸ñÒÑÈ·¶¨µÄÔ²ÐθֹÜÖÆ×÷Á½¸ùÖ§ÖùPA¡¢PB¶ÔÅ×ÎïÏßÔìÐͽøÐÐÖ§³Å¼Ó¹Ì£¬ÄÇôÔõÑù²ÅÄÜÕÒµ½Á½¸ùÖ§ÖùÓÃÁÏ×îÊ¡£¨Ö§ÖùÓëµØÃæ¡¢ÔìÐͶԽӷ½Ê½µÄÓÃÁ϶àÉÙÎÊÌâÔݲ»¿¼ÂÇ£©Ê±µÄµãP£¿£¨ÎÞÐèÖ¤Ã÷£©
£¨3£©ÎªÁËÊ©¹¤·½±ã£¬ÏÖÐè¼ÆËã³öµãO¡¢PÖ®¼äµÄ¾àÀ룬ÄÇôÁ½¸ùÖ§ÖùÓÃÁÏ×îʡʱµãO¡¢PÖ®¼äµÄ¾àÀëÊǶàÉÙ£¿£¨²»Ð´Çó½â¹ý³Ì£©

·ÖÎö £¨1£©¸ù¾ÝÌâÒâ¿ÉÒÔ½¨Á¢ºÏÊʵÄƽÃæÖ±½Ç×ø±êϵ£¬´Ó¶ø¿ÉÒÔÇóµÃÅ×ÎïÏߵĽâÎöʽ£»
£¨2£©¸ù¾ÝÁ½µãÖ®¼äÏ߶Î×î¶à£¬×÷³öÏàÓ¦µÄͼÐΣ¬Ð´³ö×÷·¨¼´¿É£»
£¨3£©¸ù¾ÝÇ°ÃæµÄ×ø±êϵºÍÅ×ÎïÏß½âÎöʽ¿ÉÒÔÇóµÃµãBµÄ×ø±ê£¬ÔÙ¸ù¾ÝÈý½ÇÐÎÏàËÆ¿ÉÒÔÇóµÃÁ½¸ùÖ§ÖùÓÃÁÏ×îʡʱµãO¡¢PÖ®¼äµÄ¾àÀ룬עÒâ´Ë´¦Ö»Ð´³ö´ð°¸¼´¿É£®

½â´ð ½â£º£¨1£©ÈçÓÒͼËùʾ£¬
ÓÉÌâÒâ¿ÉµÃ£¬µãCµÄ×ø±êΪ£¨0£¬0£©£¬µãAµÄ×ø±êΪ£¨0£¬4£©£¬µãOµÄ×ø±êΪ£¨8£¬0£©£¬
Éè´ËÅ×ÎïÏߵĽâÎöʽΪ£ºx=ay2+8£¬
Ôò0=a¡Á42+8£¬
½âµÃ£¬a=-$\frac{1}{2}$£¬
¼´Å×ÎïÏߵĽâÎöʽΪ£ºx=-$\frac{1}{2}$y2+8£»
£¨2£©×÷µãA¹ØÓÚµãCµÄ¶Ô³ÆµãµãD£¬Á¬½ÓDBÓëxÖá½»ÓÚµãP£¬ÔòµãP¼´ÎªËùÇó£»
£¨3£©Á½¸ùÖ§ÖùÓÃÁÏ×îʡʱµãO¡¢PÖ®¼äµÄ¾àÀëÊÇ4Ã×£®

µãÆÀ ±¾Ì⿼²é¶þ´Îº¯ÊýµÄÓ¦Ó㬽âÌâµÄ¹Ø¼üÊÇÃ÷È·ÌâÒ⣬ÕÒ³öËùÇóÎÊÌâÐèÒªµÄÌõ¼þ£¬ÀûÓÃÊýÐνáºÏµÄ˼Ïë½â´ðÎÊÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

18£®ÎªÁË°Ñî¡Äþ´òÔì³ÉÒ˾ӵijÇÊУ¬ÏØÕþ¸®¶ÔµØÏÂÎÛË®ÅÅ·ÅÉèÊ©½øÐиÄÔ죮ijʩ¹¤¶Ó³Ðµ£ÆÌÉèµØÏÂÅÅÎ۹ܵÀÈÎÎñ¹²2200Ã×£¬ÎªÁ˼õÉÙÊ©¹¤¶ÔÖܱ߽»Í¨»·¾³µÄÓ°Ï죬ʩ¹¤¶Ó½øÐм¼Êõ¸ïУ¬Ê¹Êµ¼Êƽ¾ùÿÌìÆÌÉè¹ÜµÀµÄ³¤¶È±ÈÔ­¼Æ»®¶à10%£¬½á¹ûÌáÇ°Á½ÌìÍê³ÉÈÎÎñ£¬ÇóÔ­¼Æ»®Æ½¾ùÿÌìÆÌÉèÅÅÎ۹ܵÀµÄ³¤¶È£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

19£®Èçͼ£¬ÒÑÖª¡÷ABCµÄÈý¸ö¶¥µã×ø±êΪA£¨-2£¬3£©¡¢B£¨-6£¬0£©¡¢C£¨-1£¬0£©£®
£¨1£©Çë»­³ö¡÷ABC¹ØÓÚ×ø±êÔ­µãOµÄÖÐÐĶԳÆͼÐΡ÷A¡äB¡äC¡ä£¬²¢Ð´³öµãAµÄ¶ÔÓ¦µãA¡äµÄ×ø±ê£¨2£¬-3£©£»
£¨2£©Èô½«µãBÈÆ×ø±êÔ­µãOÄæʱÕëÐýת90¡ã£¬ÇëÖ±½Óд³öµãBµÄ¶ÔÓ¦µãB¡åµÄ×ø±ê£¨0£¬-6£©£»
£¨3£©ÇëÖ±½Óд³ö£ºÒÔA¡¢B¡¢CΪ¶¥µãµÄƽÐÐËıßÐεĵÚËĸö¶¥µãDµÄ×ø±ê£¨3£¬3£©»ò£¨-7£¬3£©»ò£¨-5£¬-3£©£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

16£®º¯Êý=$\frac{x-2}{x-5}$+$\sqrt{x-1}$µÄ×Ô±äÁ¿xµÄÈ¡Öµ·¶Î§Îªx¡Ý1ÇÒx¡Ù5£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

3£®Èç¹ûÒ»¸ö¶à±ßÐεÄÿ¸öÍâ½ÇΪ30¡ã£¬ÄÇôËüµÄÄڽǺÍΪ1800¡ã£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

13£®ÏÂÁз½³ÌÖбäÐÎÕýÈ·µÄÊÇ£¨¡¡¡¡£©
¢Ù3x+6=0±äÐÎΪx+2=0£»
¢Ú2x+8=5-3x±äÐÎΪx=3£»
¢Û$\frac{x}{2}+\frac{x}{3}$=4È¥·ÖĸµÄ3x+2x=24£»
¢Ü£¨x+2£©-2£¨x-1£©=0È¥À¨ºÅµÃx+2-2x-2=0£®
A£®¢Ù¢ÛB£®¢Ù¢Ú¢ÛC£®¢Ù¢ÜD£®¢Ù¢Û¢Ü

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

20£®ÏÈÔĶÁÏÂÁÐ֪ʶ£¬È»ºó»Ø´ðºóÃæµÄÎÊÌ⣺
£¨1£©¶þÔªÒ»´Î·½³Ì×é$\left\{\begin{array}{l}{{a}_{1}x+{b}_{1}y={c}_{1}}\\{{a}_{2}x+{b}_{2}y={c}_{2}}\end{array}\right.$µÄ½âµÄÇé¿öÓÐÒÔÏÂÈýÖÖ£º
µ±$\frac{{a}_{1}}{{a}_{2}}$=$\frac{{b}_{1}}{{b}_{2}}$=$\frac{{c}_{1}}{{c}_{2}}$ʱ£¬·½³Ì×éÓÐÎÞÊý½â£®
µ±$\frac{{a}_{1}}{{a}_{2}}$=$\frac{{b}_{1}}{{b}_{2}}$¡Ù$\frac{{c}_{1}}{{c}_{2}}$ʱ£¬·½³Ì×éÓÐÎ޽⣮
µ±$\frac{{a}_{1}}{{a}_{2}}$¡Ù$\frac{{b}_{1}}{{b}_{2}}$ʱ£¬·½³Ì×éÓÐΨһ½â£®
£¨2£©Åж϶þÔªÒ»´Î·½³Ì×é$\left\{\begin{array}{l}{x+y=2}\\{2x+2y=4}\end{array}\right.$µÄ½âµÄÇé¿ö£ºÎÞÊý½â£®
Åж϶þÔªÒ»´Î·½³Ì×é$\left\{\begin{array}{l}{2x-y=1}\\{4x-2y=3}\end{array}\right.$µÄ½âµÄÇé¿ö£ºÎ޽⣮
Åж϶þÔªÒ»´Î·½³Ì×é$\left\{\begin{array}{l}{2x+y=1}\\{4x-2y=3}\end{array}\right.$µÄ½âµÄÇé¿ö£ºÎ¨Ò»½â£®
£¨3£©Ð¡Ã÷ÔÚ½âÏÂÃæµÄ¶þÔªÒ»´Î·½³Ì×éʱ£¬Åöµ½ÁËÒ»¸ö·Ç³£¡°ÑÏÖØ¡±µÄÎÊÌ⣬·¢ÏÖ¡°10=8¡±£¬ËûÖªµÀÕâÊDz»¿ÉÄܵģ¬µ«ÊÇÓÖÕÒ²»µ½´íÎóµÄÔ­Òò£¬ÇëÄã½âÊÍһϣº
½â·½³Ì×飺$\left\{\begin{array}{l}{2x+y=5¢Ù}\\{4x+2y=8¢Ú}\end{array}\right.$£®
½â£ºÓÉ¢ÙµÃy=5-2x£¬´úÈë¢ÚµÃ4x+2£¨5-2x£©=8£¬µÃ10=8£®
ÇëÖ¸³ö³öÏÖÕâÖÖ´íÎóµÄÔ­Òò£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

17£®ÔÚ¡÷ABCÖУ¬D¡¢E·Ö±ðÊÇAB¡¢ACµÄÖе㣬ÒÑÖªDE=5£¬ÄÇôBC=10£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

18£®½âÏÂÁв»µÈʽ£¨×飩£¬²¢°ÑËüÃǵĽ⼯±íʾÔÚÊýÖáÉÏ£®
£¨1£©x-3£¨x-2£©¡Ý4
£¨2£©$\left\{\begin{array}{l}{x-5£¼1+2x}\\{3x+2¡Ü4x}\end{array}\right.$£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸