精英家教网 > 初中数学 > 题目详情
如图,⊙O的直径AB=4,C为圆周上一点,AC=2,过点C作⊙O的切线DC,P点为优弧
CBA
上一动点(不与A、C重合).
(1)求∠APC与∠ACD的度数;
(2)当点P移动到CB弧的中点时,求证:四边形OBPC是菱形.
(3)P点移动到什么位置时,△APC与△ABC全等,请说明理由.
(1)连接AC,如图所示:

∵AC=2,OA=OB=OC=
1
2
AB=2,
∴AC=OA=OC,
∴△ACO为等边三角形,
∴∠AOC=∠ACO=∠OAC=60°,
∴∠APC=
1
2
∠AOC=30°,
又DC与圆O相切于点C,
∴OC⊥DC,
∴∠DCO=90°,
∴∠ACD=∠DCO-∠ACO=90°-60°=30°;…(4分)
(2)连接PB,OP,
∵AB为直径,∠AOC=60°,
∴∠COB=120°,
当点P移动到CB的中点时,∠COP=∠POB=60°,
∴△COP和△BOP都为等边三角形,
∴OC=CP=OB=PB,
则四边形OBPC为菱形;…(8分)
(3)当点P与B重合时,△ABC与△APC重合,显然△ABC≌△APC;
当点P继续运动到CP经过圆心时,△ABC≌△CPA,理由为:
∵CP与AB都为圆O的直径,
∴∠CAP=∠ACB=90°,
在Rt△ABC与Rt△CPA中,
AB=CP
AC=AC

∴Rt△ABC≌Rt△CPA(HL).
综上所述当点P与点B重合或CP经过圆心时,△APC与△ABC全等
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

如图,已知AC切⊙O于A,AB为直径,C为⊙O外一点,BC交⊙O于点D,AC=6,BD=5,连接AD.
(1)证明:△CAD△CBA;(2)求线段DC的长.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,AB是⊙O的直径,PA切⊙O于A,OP交⊙O于C,连BC.若∠P=30°,求∠B的度数.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,点P是⊙O外一点,PA切⊙O于点A,∠O=60°,则∠P度数为______度.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,以Rt△ABC的直角边AB为直径的半圆O,与斜边AC交于D,E是BC边上的中点,连接DE.
(1)DE与半圆O相切吗?若相切,请给出证明;若不相切,请说明理由;
(2)若AD、AB的长是方程x2-10x+24=0的两个根,求BD的长.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知:如图,⊙P与x轴相切于坐标原点O,点A(0,2)是⊙P与y轴的交点,点B(-2
2
,0)在x轴上.连接BP交⊙P于点C,连接AC并延长交x轴于点D.
(1)求线段BC的长;
(2)求直线AC的关系式;
(3)当点B在x轴上移动时,是否存在点B,使△BOP相似于△AOD?若存在,求出符合条件的点B的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图(1),AB是⊙O的直径,射线AT⊥AB,点P是射线AT上的一个动点(P与A不重合),PC与⊙O相切于C,过C作CE⊥AB于E,连接BC并延长BC交AT于点D,连接PB交CE于F.
(1)请你写出PA、PD之间的关系式,并说明理由;
(2)请你找出图中有哪些三角形的面积被PB分成两等分,并加以证明;
(3)设过A、C、D三点的圆的半径是R,当CF=
1
4
R时,求∠APC的度数,并在图(2)中作出点P.(要求尺规作图,不写作法,但要保留作图痕迹)

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知⊙O的半径为3cm,圆心O到直线l的距离是2m,则直线l与⊙O的位置关系是______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,A、B、C三点在⊙O上,
AB
=
BC
,∠1=∠2.
(1)判断OA与BC的位置关系,并说明理由;
(2)求证:四边形OABC是菱形;
(3)过A作⊙O的切线交CB的延长线于P,且OA=4,求△APB的周长.

查看答案和解析>>

同步练习册答案