精英家教网 > 初中数学 > 题目详情
已知α是锐角,且2cosα=1,则α=    度;若tan(α+15°)=1,则tanα=   
【答案】分析:根据特殊角度的三角函数值求解.
解答:解:(1)α是锐角,且2cosα=1,
∴cosα=
∴α=60°;
(2)tan(α+15°)=1.
∴α+15°=45°,∴α=30°.
∴tanα=tan30°=
点评:熟记特殊角的三角函数值是解题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,已知抛物线y=-3x2-(2c-b)x+a2,其中a、b、c是一个直角三角形的三边的长,且a<b<c,又知这个三角形两锐角的正弦值分别是方程25x2-35x+12=0的两个根.
(1)求a:b:c;
(2)设这条抛物线与x轴的左、右交点分别是M、N,与y轴的交点为T,顶点为P,求△MPT的面积(用只含a的代数式表示);
(3)在(2)的条件下,如果△MPT的面积为9,问抛物线上是否存在异于点P的点Q,使得△QMT的面积与△MPT的面积相等?如果存在,请求出点Q的坐标,如果不存在请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图,已知抛物线y=-3x2-(2c-b)x+a2,其中a、b、c是一个直角三角形的三边的长,且a<b<c,又知这个三角形两锐角的正弦值分别是方程25x2-35x+12=0的两个根.
(1)求a:b:c;
(2)设这条抛物线与x轴的左、右交点分别是M、N,与y轴的交点为T,顶点为P,求△MPT的面积(用只含a的代数式表示);
(3)在(2)的条件下,如果△MPT的面积为9,问抛物线上是否存在异于点P的点Q,使得△QMT的面积与△MPT的面积相等?如果存在,请求出点Q的坐标,如果不存在请说明理由.

查看答案和解析>>

科目:初中数学 来源:2012年四川省成都市中考数学模拟试卷(四)(解析版) 题型:解答题

如图,已知抛物线y=-3x2-(2c-b)x+a2,其中a、b、c是一个直角三角形的三边的长,且a<b<c,又知这个三角形两锐角的正弦值分别是方程25x2-35x+12=0的两个根.
(1)求a:b:c;
(2)设这条抛物线与x轴的左、右交点分别是M、N,与y轴的交点为T,顶点为P,求△MPT的面积(用只含a的代数式表示);
(3)在(2)的条件下,如果△MPT的面积为9,问抛物线上是否存在异于点P的点Q,使得△QMT的面积与△MPT的面积相等?如果存在,请求出点Q的坐标,如果不存在请说明理由.

查看答案和解析>>

科目:初中数学 来源:2012年四川省成都市望子成龙学校中考数学一模试卷(解析版) 题型:解答题

如图,已知抛物线y=-3x2-(2c-b)x+a2,其中a、b、c是一个直角三角形的三边的长,且a<b<c,又知这个三角形两锐角的正弦值分别是方程25x2-35x+12=0的两个根.
(1)求a:b:c;
(2)设这条抛物线与x轴的左、右交点分别是M、N,与y轴的交点为T,顶点为P,求△MPT的面积(用只含a的代数式表示);
(3)在(2)的条件下,如果△MPT的面积为9,问抛物线上是否存在异于点P的点Q,使得△QMT的面积与△MPT的面积相等?如果存在,请求出点Q的坐标,如果不存在请说明理由.

查看答案和解析>>

科目:初中数学 来源:2011年四川省成都市青羊区中考数学一模试卷(解析版) 题型:解答题

如图,已知抛物线y=-3x2-(2c-b)x+a2,其中a、b、c是一个直角三角形的三边的长,且a<b<c,又知这个三角形两锐角的正弦值分别是方程25x2-35x+12=0的两个根.
(1)求a:b:c;
(2)设这条抛物线与x轴的左、右交点分别是M、N,与y轴的交点为T,顶点为P,求△MPT的面积(用只含a的代数式表示);
(3)在(2)的条件下,如果△MPT的面积为9,问抛物线上是否存在异于点P的点Q,使得△QMT的面积与△MPT的面积相等?如果存在,请求出点Q的坐标,如果不存在请说明理由.

查看答案和解析>>

同步练习册答案