【题目】如图,点、分别在、上,连接,平分交于点,,.
(1)与平行吗?并说明理由;
(2)写出图中与相等的角,并说明理由;
【答案】(1)DE∥BC,理由见解析;(2)与相等的角有:∠CFD、∠ADF,理由见解析
【解析】
(1)利用角平分线及邻补角证得∠BDF=∠BFD,即可得到∠BFD=∠EDF,得到DE∥BC;
(2)根据DE∥BC及证得∠CED=∠CFD,再根据∠BFD+∠CFD=180°,∠BDF+∠ADF=180°,∠BDF=∠BFD,得到∠ADF=∠CED.
(1)DE∥BC,理由如下:
∵平分,
∴∠BDF=∠EDF,
∵,∠BFD+∠DFC=180°,
∴∠BDF=∠BFD,
∴∠BFD=∠EDF,
∴DE∥BC;
(2)与相等的角有:∠CFD、∠ADF,理由如下:
∵DE∥BC,
∴∠AED=∠C,∠C+∠CED=180°,
∵,
∴∠C=∠BFD,
∴DF∥AC,
∴∠C+∠CFD=180°,
∴∠CED=∠CFD,
∵∠BFD+∠CFD=180°,∠BDF+∠ADF=180°,∠BDF=∠BFD,
∴∠CFD=∠ADF,
∴∠ADF=∠CED,
∴与相等的角有:∠CFD、∠ADF.
科目:初中数学 来源: 题型:
【题目】某服装店用 6000 元购进一批衬衫,以 60 元/件的价格出售,很快售完,然后又用 13500元购进同款衬衫,购进数量是第一次的 2 倍,购进的单价比上一次每件多 5 元,服装店 仍按原售价 60 元/件出售,并且全部售完.
(1)该服装店第一次购进衬衫多少件?
(2)将该服装店两次购进衬衫看作一笔生意,那么这笔生意是盈利还是亏损?求出盈利(或 亏损)多少元?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:如图,在平行四边形ABCD中,E、F分别为边AB、CD的中点,BD是对角线,AG∥DB交CB的延长线于G.
(1)求证:△ADE≌△CBF;
(2)若四边形 BEDF是菱形,则四边形AGBD是什么特殊四边形?并证明你的结论.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系xOy中,点P的坐标为(x1,y1),点Q的坐标为(x2,y2),且x1≠x2,y1≠y2,若PQ为某个等腰三角形的腰,且该等腰三角形的底边与x轴平行,则称该等腰三角形为点P,Q的“相关等腰三角形”.下图为点P,Q的“相关等腰三角形”的示意图.
(1)已知点A的坐标为(0,1),点B的坐标为(-,0),则点A,B的“相关等腰三角形”的顶角为 °;
(2)若点C的坐标为(0,),点D在直线y=4上,且C,D的“相关等腰三角形”为等边三角形,求直线CD的表达式;
(3)⊙O的半径为,点N在双曲线y=﹣上.若在⊙O上存在一点M,使得点M、N的“相关等腰三角形”为直角三角形,直接写出点N的横坐标xN的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在Rt△ABC中,∠ACB=90°,∠A=40°,△ABC的外角∠CBD的平分线BE交AC的延长线于点E.
(1)求∠CBE的度数;
(2)过点D作DF∥BE,交AC的延长线于点F,求∠F的度数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知点A(12,0),O为坐标原点,P是线段OA上任一点(不含端点O、A),二次函数y1的图象过P、O两点,二次函数y2的图象过P、A两点,它们的开口均向下,顶点分别为B、C,射线OB与射线AC相交于点D.则当OD=AD=9时,这两个二次函数的最大值之和等于( )
A. 8 B. 3 C. 2 D. 6
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】小明受《乌鸦喝水》故事的启发,利用量桶和体积相同的小球进行了如下操作:请根据图中给出的信息,解答下列问题:
(1)放入一个小球量桶中水面升高 cm;
(2)求放入小球后量桶中水面的高度y(cm)与小球个数x(个)之间的函数关系式;
(3)当量桶中水面上升至距离量桶顶部3cm时,应在量桶中放入几个小球?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在矩形ABCD中,AB=6,BC=8,E是BC边上一点,将矩形沿AE折叠,点B落在点B'处,当△B'EC是直角三角形时,BE的长为( )
A.2B.6C.3或6D.2或3或6
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】将一副三角尺(在Rt△ABC中,∠ACB=90°,∠B=60°;在Rt△DEF中,∠EDF=90°,∠E=45°)如图1摆放,点D为AB边的中点,DE交AC于点P,DF经过点C,且BC=2.
(1)求证:△ADC∽△APD;
(2)求△APD的面积;
(3)如图2,将△DEF绕点D顺时针方向旋转角α(0°<α<60°),此时的等腰直角三角尺记为△DE′F′,DE′交AC于点M,DF′交BC于点N,试判断的值是否随着α的变化而变化?如果不变,请求出的值;反之,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com