【题目】有甲、乙两位同学,根据“关于x的一元二次方程kx2﹣(k+2)x+2=0”(k为实数)这一已知条件,他们各自提出了一个问题考查对方,问题如下:
甲:你能不解方程判断方程实数根的情况吗?
乙:若方程有两个不相等的正整数根,你知道整数k的值等于多少吗?请你帮助两人解决上述问题.
【答案】见解析.
【解析】试题分析:(1)首先根据一元二次方程的定义得出k≠0,再计算△=(k+2)2-4k×2=(k-2)2≥0,由判别式的意义即可判定方程有实数根;
(2)利用因式分解法求出方程的两根为x1=1,x2=,根据方程有两个不相等的正整数根,得出整数k=1.
试题解析:(1)∵kx2﹣(k+2)x+2=0(k为实数)是关于x的一元二次方程,
∴k≠0,
∵△=(k+2)2﹣4k×2=(k﹣2)2≥0,
∴方程有实数根;
(2)kx2﹣(k+2)x+2=0,
(x﹣1)(kx﹣2)=0,
x﹣1=0,或kx﹣2=0,
解得x1=1,x2=,
∵方程有两个不相等的正整数根,且k为整数,
∴k=1或2,
∵k=2时,x1=x2=1,两根相等,不合题意舍去,
∴k=1.
科目:初中数学 来源: 题型:
【题目】每年农历五月初五,是中国民间的传统节日——端午节.它始于我国的春秋战国时期,已列为世界非物质文化遗产.时至今日,端午节在我国仍是一个十分盛行的节日.今年端午节,某地甲、乙两家超市为吸引更多的顾客,开展促销活动,对某种质量和售价相同的粽子分别推出了不同的优惠方案.甲超市的方案是:购买该种粽子超过80元后,超出80元的部分按九折收费;乙超市的方案是:购买该种粽子超过120元后,超出120元的部分按八折收费.请根据顾客购买粽子的金额,选择到哪家超市购买粽子划算?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,正方形ABCD的边长为25,内部有6个全等的正方形,小正方形的顶点E、F、G、H分别落在边AD、AB、BC、CD上,则每个小正方形的边长为( )
A.6 B.5 C.2 D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】春季是流感高发的季节,为此,某校为预防流感,对教室进行熏药消毒.在对教室进行消毒的过程中,先经过10min的药物燃烧,再封闭教室15min,然后打开门窗进行通风.已知室内空气中含药量与药物在空气中的持续时间之间的函数关系式如图所示(即图中线段OA、线段AB和双曲线在点B及其右侧部分),请根据图中信息解答下列问题:
(1)求药物燃烧阶段和打开门窗进行通风阶段与之间的函数表达式;
(2)若室内空气中的含药量不低于且持续时间不少于35min,才能有效消灭病毒,则此次消毒是否有效?请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(8分)用方程解答下列问题
(1)一个角的余角比它的补角的还少15°,求这个角的度数.
(2)几个人共同搬运一批货物,如果每人搬运8箱货物,则剩下7箱货物未搬运;如果每人搬运12箱货物,则缺13箱货物,求参与搬运货物的人数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】探究逼近的有理近似值.
方法介绍:
经过步操作(为正整数)不断寻找有理数,,使得,并且让的值越来越小,同时利用数轴工具将任务几何化,直观理解通过等分线段的方法不断缩小对应的点所在线段的长度(二分法)
思路
在数轴上记,对应的点分别为,和的平均数对应线段的中点(记为).通过判断还是,得到点是在二等分后的“左线段”上还是“右线段”上,重复上述步骤,不断得到,从而得到更精确的近似值.
具体操作步骤及填写“阅读活动任务单”:
(1)当时,
①寻找左右界值:先寻找两个连续正整数,使得.
因为,所以,那么,,线段的中点对应的数.
②二分定位:判断点在“左线段”上还是在“右线段”上.
比较7与的大小,从而确定与的大小;
因为 > (填 “>”或“<”),得到点在线段 上(填“”或“”).
(2)当时,在(1)中所得的基础上,仿照以上步骤,继续进行下去,得到表中时的相应内容.
请继续仿照以上步骤操作下去,补全“阅读活动任务单”:
的值 | 还是 | 点在“左线段”上还是“右线段”上 | 得出更精确的与,,的大小关系 | |||
1 | 2 | 3 | 2.5 | 点在线段上 | ||
2 | 2.5 | 3 | 2.75 | 点在线段上 | ||
3 | 2.5 | 2.75 | 2.625 | |||
4 |
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】定义:有两条边长的比值为的直角三角形叫“潜力三角形”.如图,在△ABC中,∠B=90°,D是AB的中点,E是CD的中点,DF∥AE交BC于点F.
(1)设“潜力三角形”较短直角边长为a,斜边长为c,请你直接写出的值为 ;
(2)若∠AED=∠DCB,求证:△BDF是“潜力三角形”;
(3)若△BDF是“潜力三角形”,且BF=1,求线段AC的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,点E是边AC上一点,线段BE垂直于∠BAC的平分线于点D,点M为边BC的中点,连接DM.
(1)求证: DM=CE;
(2)若AD=6,BD=8,DM=2,求AC的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在半径为2的扇形AOB中,∠AOB=90°,点C是弧AB上的一个动点(不与点A,B重合),OD⊥BC,OE⊥AC,垂足分别为D,E.
(1)当BC=1时,求线段OD的长;
(2)在△DOE中是否存在长度保持不变的边?如果存在,请指出并求其长度,如果不存在,请说明理由;
(3)设BD=x,△DOE的面积为y,求y关于x的函数表达式,并写出自变量的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com