【题目】如图1,在△OMN中,∠MON=90°,OM=6cm,∠OMN=30°.等边△ABC的顶点B与点O重合,BC在OM上,点A恰好在MN上.
(1)求等边△ABC的边长;
(2)如图2,将等边△ABC沿OM方向以1cm/s的速度平移,边AB、AC分别与MN交于点E、F,在△ABC平移的同时,点P从△ABC的顶点B出发,以2cm/s的速度沿折线B→A→C运动,当点P达到点C时,点P停止运动,△ABC也随之停止平移.设△ABC平移时间为t(s)
①用含t的代数式表示AE的长,并写出t的取值范围;
②在点P沿折线B→A→C运动的过程中,是否在某一时刻,点P、E、F组成的三角形为等腰三角形?若存在,求出此时t值;若不存在,请说明理由.
【答案】(1)3cm;(2)①()②t值为或2或
【解析】试题分析:(1)根据,∠OMN=30°和△ABC为等边三角形,求证△OAM为直角三角形,然后即可得出答案.
(2)①由直角三角形的性质得出ON=2,MN=4.证明△OMN∽△BEM,得出对应边成比例,得出BE,即可得出AE的长,容易得出t的取值范围;
②△PEF为等腰三角形,分情况讨论,求出t的值,如果在0<t<3这个范围内就存在,否则就不存在.
试题解析:(1)∵△ABC为等边三角形,
∴∠AOC=60°,
又∵∠OMN=30°
∴∠OAM=90°,OA⊥MN,
即△OAM为直角三角形,
∴OA=OM=3cm,
即等边△ABC的边长为3cm.
(2)①∵BM=6-t,OM=6cm,∠OMN=30°,
∴ON=2,MN=4.
∵∠M=∠M,∠N=∠MBE=60°,
∴△OMN∽△BEM,
∴,即,
∴BE=,
∴AE=AB-BE=(0≤t≤3);
②存在;理由如下:
分4种情况:
(a)当点P在线段AB上时,点P在AB上运动的时间0≤t≤,
∵△PEF为等腰三角形,∠PEF=90°
∴PE=EF,
∵∠A=60°,∠AFE=30°,
∴EF=AE=(3-BE)=(3-)=t,
∴=t或=t,
解得t=或>(故舍去),
(b)当点P在AF上时,
若PE=PF时,点P为EF的垂直平分线与AC的交点,
此时P为直角三角形PEF斜边AF的中点,
∴PF=AP=2t-3,
∵点P从△ABC的顶点B出发,以2cm/s的速度沿折线B→A→C运动,
∴0<t<3,在直角三角形中,cos30°=,
解得:t=2,
若FE=FP,
AF= ,
则t-(2t-3)=t,
解得:t=12-6;
(c)当PE=EF,P在AE上时无解,
(d)当P点在CF上时,AP=2t-3,AF=t,则PF=AP-AF=t-3=EF,所以t-3=t,
解得 t=12+6>3,不合题意,舍去.
综上,存在t值为或12-6或2时,△PEF为等腰三角形.
科目:初中数学 来源: 题型:
【题目】如图,已知⊙O的直径AB=10,弦AC=6,∠BAC的平分线交⊙O于点D,过点D作DE⊥AC交AC的延长线于点E。
(1)求证:DE是⊙O的切线;
(2)求DE的长。
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系中,
(1)已知点在轴上,求点的坐标;
(2)已知两点, ,若轴,点B在第一象限,求m的值,并确定n的取值范围。
(3)在(1)(2)的条件下,如果线段AB的长度是5,求以P、A、B为顶点的三角形的面积S。
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,将矩形纸片ABCD(AD>AB)折叠,使点C刚好落在线段AD上,且折痕分别与边BC,AD相交,设折叠后点C,D的对应点分别为点G,H,折痕分别与边BC,AD相交于点E,F.
(1)判断四边形CEGF的形状,并证明你的结论;
(2)若AB=3,BC=9,求线段CE的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】被誉为“里下河的明珠”的九龙口自然保护区,地处射阳湖腹部的建湖县九龙口镇,由蚬河等9条自然河道汇集而成,水面约6670万平方米,这里藏垒水禽野味,广植柴蒲菱藕,盛产鱼虾螃蟹,有“金滩银荡”之美誉,是天然的“聚宝盆”,其中6670万平方米用科学记数法表示为平方米.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com