【题目】如图,在四边形ABCD中,AB=AD,BD平分∠ABC,AC⊥BD,垂足为点O.
(1)求证:四边形ABCD是菱形;
(2)若CD=3,BD=2 ,求四边形ABCD的面积.
【答案】
(1)证明:∵AB=AD,
∴∠ABD=∠ADB,
∵BD平分∠ABC,
∴∠ABD=∠CBD,
∴∠ADB=∠CBD,
∵AC⊥BD,AB=AD,
∴BO=DO,
在△AOD与△COB中, ,
∴△AOD≌△COB,
∴AO=OC,
∵AC⊥BD,
∴四边形ABCD是菱形;
(2)解:∵四边形ABCD是菱形,
∴OD= BD= ,
∴OC= =2,
∵AC=4,
∴S菱形ABCD= ACBD=4 .
【解析】(1)根据等腰三角形的性质得到∠ABD=∠ADB,根据角平分线的定义得到∠ABD=∠CBD,等量代换得到∠ADB=∠CBD,再根据全等三角形的性质得到AO=OC,由菱形的判别即可得到所求的结论结论;
(2)根据菱形的性质求得OD的值,再根据勾股定理得到OC的值,再菱形的面积公式求得所求答案.
科目:初中数学 来源: 题型:
【题目】如图,正方形ABCD的边长为8,在各边上顺次截取AE=BF=CG=DH=5,则四边形EFGH的面积是( )
A. 30 B. 34 C. 36 D. 40
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,将ABCD沿CE折叠,使点D落在BC边上的F处,点E在AD上.
(1)求证:四边形ABFE为平行四边形;
(2)若AB=4,BC=6,求四边形ABFE的周长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如(图1),在平面直角坐标系中,,,,且满足,线段交轴于点.
(1)填空: , ;
(2)点为轴正半轴上一点,若,,且分别平分,如(图2),求的度数;
(3)求点的坐标;
(4)如(图3),在轴上是否存在一点,使三角形的面积和三角形的面积相等?若存在,求出点坐标,若不存在,说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】阅读第(1)题,在解答过程后面空格中填写理由(依据),并解答第(2)题.
(1)已知,如图1:,为、之间一点,求的大小.
解:过点作.
∵(已知).
∴(_________________________),
∴,
(_________________________).
∵,
∴.
(2)如图,是我们生活中经常接触的小刀,刀片的外形如图2,刀片上、下是平行的,即,.转动刀片时会形成和,那么的大小是否会随刀片的转动面改变?说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知方程组的解x为非正数,y为负数.
(1)求a的取值范围;
(2)化简∣a-3∣+∣a+2∣;
(3)在a的取值范围内,m是最大的整数,n是最小的整数,求(m+n)m-n的值;
(4)在a的取值范围内,当a取何整数时,不等式2ax+x>2a+1的解为x<1.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知直线y1=kx+1(k<0)与直线y2=mx(m>0)的交点坐标为(,m),则不等式组mx﹣2<kx+1<mx的解集为( )
A. x> B. <x< C. x< D. 0<x<
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,已知线段 AB 的两个端点坐标分别为A(a,5),B(8,b),且.
(1)求 a,b 的值;
(2)①连OA,OB,则SAOB = 平方单位;(说明:SAOB 表示三角形 AOB 的面积,下同.)
②点P从O点出发沿 y 轴负方向运动,速度为每秒1个单位,连PA交OB于C,则运动多少秒时,SABC=SPOC ;
(3)在(2)的条件下,过P作直线m∥AB,过B作直线 l∥x轴,直线m和直线l相交于点Q,请直接写出点Q的坐标 .
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com