精英家教网 > 初中数学 > 题目详情
已知多项式2x-13x2+3与一个整式的和是6x-8x2+2。求这个整式与5x2+4x-2的差是多少?
解:设所求整式为A,则
A+(2x-13x2+3)=6x-8x2+2,
利用加减法逆运算关系,
得:A=6x-8x2+2-(2x-13x2+3)
=6x-8x2+2-2x+13x2-3
=5x2+4x-1
∴A-(5x2+4x-2)
=5x2+4x-1-5x2-4x+2=1。
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

计算与解方程:
(1)33+(-32)+7-(-3)
(2)-|-32|÷3×(-
1
3
)-(-2)3
(3)2(a2b-2ab2+c)-(2c+3a2b-ab2)、
(4)(-2)3-2×(-3)+|2-5|-(-1)2010
(5)化简求值:3x2y-[6xy-2(4xy-2)-x2y]+1,其中x=-
1
2

(6)已知多项式(2mx2+5x2+3x+1)-(5x2-4y2+3x)化简后不含x2项.求多项式2m3-[3m3-(4m-5)+m]的值.
(7)解方程:①3x+3=2x+7         ②
2(x+1)
3
=
5(x+1)
6
-1

查看答案和解析>>

科目:初中数学 来源: 题型:

(1)计算:
0•49
+
4
-
3
1
8

(2)计算:-2x•(
3
2
x2-x+1)

(3)计算:(2x)3•(y32÷4x3y4
(4)先化简,再求值:(x-3)2+(x+2)•(x-2)-2x2,其中x=
1
3

(5)分解因式:已知三个多项式:
1
2
x2+x-1
1
2
x2+3x+1
1
2
x2-x
,请你选择其中两个进行加法运算,并把结果分解因式.

查看答案和解析>>

科目:初中数学 来源: 题型:阅读理解

阅读与理解:
(1)先阅读下面的解题过程:
分解因式:a2-6a+5
解:方法(1)原式=a2-a-5a+5
=(a2-a)+(-5a+5)
=a(a-1)-5(a-1)
=(a-1)(a-5)
方法(2)原式=a2-6a+9-4
=(a-3)2-22
=(a-3+2)(a-3-2)
=(a-1)(a-5)
再请你参考上面一种解法,对多项式x2+4x+3进行因式分解;
(2)阅读下面的解题过程:
已知m2+n2-4m+6n+13=0,试求m与n的值.
解:由已知得:m2-4m+4+n2+6n+9=0
因此得到:(m-2)2+(n+3)2=0
所以只有当(m-n)=0并且(n+3)=0上式才能成立.
因而得:m=2 并且 n=-3
请你参考上面的解题方法解答下面的问题:
已知:x2+y2+2x-4y+5=0,试求xy的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知m2+2mn+2n2-6n+9=0,求
m
n2
的值.
解:∵m2+2mn+2n2-6n+9=0
∴(m+n)2+(n-3)2=0
∴(m+n)2=0,(n-3)2=0
∴n=3,m=-3
m
n2
=
-3
9
=-
1
3

根据你的观察,探究下面的问题:
(1)已知x2+4x+4+y2-8y+16=0,求
y
x
的值;
(2)已知a,b,c是△ABC的三边长,且满足a2+b2-8b-10a+41=0,求△ABC中最大边c的取值范围;
(3)试说明不论x,y取什么有理数时,多项式x2+y2-2x+2y+3的值总是正数.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

计算与解方程:
(1)33+(-32)+7-(-3)
(2)-|-32|÷3×(-
1
3
)-(-2)3
(3)2(a2b-2ab2+c)-(2c+3a2b-ab2)、
(4)(-2)3-2×(-3)+|2-5|-(-1)2010
(5)化简求值:3x2y-[6xy-2(4xy-2)-x2y]+1,其中x=-
1
2

(6)已知多项式(2mx2+5x2+3x+1)-(5x2-4y2+3x)化简后不含x2项.求多项式2m3-[3m3-(4m-5)+m]的值.
(7)解方程:①3x+3=2x+7         ②
2(x+1)
3
=
5(x+1)
6
-1

查看答案和解析>>

同步练习册答案