解:(1)连接BE,
∵△ABC中,AB=AC,∠C=70°,
∴∠A=180°-2∠C=180°-140°=40°,
∵DE是AB的垂直平分线,
∴AE=BE,
∴∠A=∠ABE,
∴∠BEC=∠A+∠ABE=40°+40°=80°.
(2)∵DE是AB的垂直平分线,
∴AE=BE,
∴△BCE的周长=BE+CE+BC=AE+CE+BC=AC+BC=32+21=53cm.
故分别填80,53.
分析:(1)根据△ABC中,AB=AC,∠C=70°,求出∠A的度数,再根据DE是AB的垂直平分线求出∠ABE的度数,再由三角形外角与内角的关系解答即可.
(2)根据DE是AB的垂直平分线可知,AE=BE,故BE+CE=AC=32cm,故△BCE的周长=AC+BC.
点评:此题主要考查线段的垂直平分线的性质及等腰三角形的性质;分别进行角、线段的等量代换是正确解答本题的关键.